MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12 Unicode version

Theorem mul12 8858
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
mul12  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )

Proof of Theorem mul12
StepHypRef Expression
1 mulcom 8703 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
21oveq1d 5725 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  x.  C
)  =  ( ( B  x.  A )  x.  C ) )
323adant3 980 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( B  x.  A )  x.  C ) )
4 mulass 8705 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
5 mulass 8705 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  (
( B  x.  A
)  x.  C )  =  ( B  x.  ( A  x.  C
) ) )
653com12 1160 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  x.  A
)  x.  C )  =  ( B  x.  ( A  x.  C
) ) )
73, 4, 63eqtr3d 2293 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621  (class class class)co 5710   CCcc 8615    x. cmul 8622
This theorem is referenced by:  mul02  8870  mul12i  8887  mul12d  8901  mulre  11483  sqreulem  11720  demoivre  12354  demoivreALT  12355  dvdscmul  12429  dvdscmulr  12431  dvdstr  12436  ablfacrp  15136  nmoleub2lem3  18428  sinperlem  19680  coskpi  19720  sineq0  19721  efif1olem4  19739  rpvmasum2  20493  fsumcube  23969  expgrowthi  26716
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-mulcom 8681  ax-mulass 8683
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fv 4608  df-ov 5713
  Copyright terms: Public domain W3C validator