MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem2 Structured version   Unicode version

Theorem mul02lem2 9752
Description: Lemma for mul02 9753. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem2  |-  ( A  e.  RR  ->  (
0  x.  A )  =  0 )

Proof of Theorem mul02lem2
StepHypRef Expression
1 ax-1ne0 9557 . 2  |-  1  =/=  0
2 ax-1cn 9546 . . . . . . . . 9  |-  1  e.  CC
3 mul02lem1 9751 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  /\  1  e.  CC )  ->  1  =  ( 1  +  1 ) )
42, 3mpan2 671 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  ->  1  =  ( 1  +  1 ) )
54eqcomd 2475 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  ->  ( 1  +  1 )  =  1 )
65oveq2d 6298 . . . . . 6  |-  ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  ->  ( ( _i  x.  _i )  +  ( 1  +  1 ) )  =  ( ( _i  x.  _i )  +  1 ) )
7 ax-icn 9547 . . . . . . . . 9  |-  _i  e.  CC
87, 7mulcli 9597 . . . . . . . 8  |-  ( _i  x.  _i )  e.  CC
98, 2, 2addassi 9600 . . . . . . 7  |-  ( ( ( _i  x.  _i )  +  1 )  +  1 )  =  ( ( _i  x.  _i )  +  (
1  +  1 ) )
10 ax-i2m1 9556 . . . . . . . 8  |-  ( ( _i  x.  _i )  +  1 )  =  0
1110oveq1i 6292 . . . . . . 7  |-  ( ( ( _i  x.  _i )  +  1 )  +  1 )  =  ( 0  +  1 )
129, 11eqtr3i 2498 . . . . . 6  |-  ( ( _i  x.  _i )  +  ( 1  +  1 ) )  =  ( 0  +  1 )
13 00id 9750 . . . . . . 7  |-  ( 0  +  0 )  =  0
1410, 13eqtr4i 2499 . . . . . 6  |-  ( ( _i  x.  _i )  +  1 )  =  ( 0  +  0 )
156, 12, 143eqtr3g 2531 . . . . 5  |-  ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  ->  ( 0  +  1 )  =  ( 0  +  0 ) )
16 1re 9591 . . . . . 6  |-  1  e.  RR
17 0re 9592 . . . . . 6  |-  0  e.  RR
18 readdcan 9749 . . . . . 6  |-  ( ( 1  e.  RR  /\  0  e.  RR  /\  0  e.  RR )  ->  (
( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 ) )
1916, 17, 17, 18mp3an 1324 . . . . 5  |-  ( ( 0  +  1 )  =  ( 0  +  0 )  <->  1  = 
0 )
2015, 19sylib 196 . . . 4  |-  ( ( A  e.  RR  /\  ( 0  x.  A
)  =/=  0 )  ->  1  =  0 )
2120ex 434 . . 3  |-  ( A  e.  RR  ->  (
( 0  x.  A
)  =/=  0  -> 
1  =  0 ) )
2221necon1d 2692 . 2  |-  ( A  e.  RR  ->  (
1  =/=  0  -> 
( 0  x.  A
)  =  0 ) )
231, 22mpi 17 1  |-  ( A  e.  RR  ->  (
0  x.  A )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489   _ici 9490    + caddc 9491    x. cmul 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-ltxr 9629
This theorem is referenced by:  mul02  9753  rexmul  11459  mbfmulc2lem  21786  i1fmulc  21842  itg1mulc  21843  stoweidlem34  31334  ztprmneprm  32000
  Copyright terms: Public domain W3C validator