MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muinv Structured version   Unicode version

Theorem muinv 22548
Description: The Möbius inversion formula. If  G ( n )  =  sum_ k  ||  n F ( k ) for every  n  e.  NN, then  F ( n )  = 
sum_ k  ||  n  mmu ( k ) G ( n  /  k )  = 
sum_ k  ||  n mmu ( n  /  k
) G ( k ), i.e. the Möbius function is the Dirichlet convolution inverse of the constant function  1. (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
muinv.1  |-  ( ph  ->  F : NN --> CC )
muinv.2  |-  ( ph  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) ) )
Assertion
Ref Expression
muinv  |-  ( ph  ->  F  =  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) ) ) )
Distinct variable groups:    k, m, j, n, F    x, j,
k, m, n    ph, j,
k, m
Allowed substitution hints:    ph( x, n)    F( x)    G( x, j, k, m, n)

Proof of Theorem muinv
StepHypRef Expression
1 muinv.1 . . 3  |-  ( ph  ->  F : NN --> CC )
21feqmptd 5759 . 2  |-  ( ph  ->  F  =  ( m  e.  NN  |->  ( F `
 m ) ) )
3 muinv.2 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) ) )
43ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) )
54fveq1d 5708 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( G `  ( m  /  j
) )  =  ( ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) ) )
6 breq1 4310 . . . . . . . . . . . . . 14  |-  ( x  =  j  ->  (
x  ||  m  <->  j  ||  m ) )
76elrab 3132 . . . . . . . . . . . . 13  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  <->  ( j  e.  NN  /\  j  ||  m ) )
87simprbi 464 . . . . . . . . . . . 12  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  ->  j  ||  m )
98adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  ||  m )
10 elrabi 3129 . . . . . . . . . . . . . 14  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  ->  j  e.  NN )
1110adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  e.  NN )
1211nnzd 10761 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  e.  ZZ )
1311nnne0d 10381 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  =/=  0 )
14 nnz 10683 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  ZZ )
1514ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  m  e.  ZZ )
16 dvdsval2 13553 . . . . . . . . . . . 12  |-  ( ( j  e.  ZZ  /\  j  =/=  0  /\  m  e.  ZZ )  ->  (
j  ||  m  <->  ( m  /  j )  e.  ZZ ) )
1712, 13, 15, 16syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( j  ||  m  <->  ( m  / 
j )  e.  ZZ ) )
189, 17mpbid 210 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  j )  e.  ZZ )
19 nnre 10344 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  RR )
20 nngt0 10366 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  0  <  m )
2119, 20jca 532 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
m  e.  RR  /\  0  <  m ) )
2221ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  e.  RR  /\  0  < 
m ) )
23 nnre 10344 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  j  e.  RR )
24 nngt0 10366 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  0  <  j )
2523, 24jca 532 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
j  e.  RR  /\  0  <  j ) )
2611, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( j  e.  RR  /\  0  < 
j ) )
27 divgt0 10212 . . . . . . . . . . 11  |-  ( ( ( m  e.  RR  /\  0  <  m )  /\  ( j  e.  RR  /\  0  < 
j ) )  -> 
0  <  ( m  /  j ) )
2822, 26, 27syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  0  <  ( m  /  j ) )
29 elnnz 10671 . . . . . . . . . 10  |-  ( ( m  /  j )  e.  NN  <->  ( (
m  /  j )  e.  ZZ  /\  0  <  ( m  /  j
) ) )
3018, 28, 29sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  j )  e.  NN )
31 breq2 4311 . . . . . . . . . . . 12  |-  ( n  =  ( m  / 
j )  ->  (
x  ||  n  <->  x  ||  (
m  /  j ) ) )
3231rabbidv 2979 . . . . . . . . . . 11  |-  ( n  =  ( m  / 
j )  ->  { x  e.  NN  |  x  ||  n }  =  {
x  e.  NN  |  x  ||  ( m  / 
j ) } )
3332sumeq1d 13193 . . . . . . . . . 10  |-  ( n  =  ( m  / 
j )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
)  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
) )
34 eqid 2443 . . . . . . . . . 10  |-  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) )  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) )
35 sumex 13180 . . . . . . . . . 10  |-  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
)  e.  _V
3633, 34, 35fvmpt 5789 . . . . . . . . 9  |-  ( ( m  /  j )  e.  NN  ->  (
( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
3730, 36syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
385, 37eqtrd 2475 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( G `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
3938oveq2d 6122 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) )  =  ( ( mmu `  j
)  x.  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
) ) )
40 fzfid 11810 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1 ... ( m  / 
j ) )  e. 
Fin )
41 sgmss 22459 . . . . . . . . 9  |-  ( ( m  /  j )  e.  NN  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  C_  (
1 ... ( m  / 
j ) ) )
4230, 41syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  C_  (
1 ... ( m  / 
j ) ) )
43 ssfi 7548 . . . . . . . 8  |-  ( ( ( 1 ... (
m  /  j ) )  e.  Fin  /\  { x  e.  NN  |  x  ||  ( m  / 
j ) }  C_  ( 1 ... (
m  /  j ) ) )  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  e.  Fin )
4440, 42, 43syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  e.  Fin )
45 mucl 22494 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
mmu `  j )  e.  ZZ )
4611, 45syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( mmu `  j )  e.  ZZ )
4746zcnd 10763 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( mmu `  j )  e.  CC )
481ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  F : NN
--> CC )
49 elrabi 3129 . . . . . . . 8  |-  ( k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ->  k  e.  NN )
50 ffvelrn 5856 . . . . . . . 8  |-  ( ( F : NN --> CC  /\  k  e.  NN )  ->  ( F `  k
)  e.  CC )
5148, 49, 50syl2an 477 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m } )  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } )  ->  ( F `  k )  e.  CC )
5244, 47, 51fsummulc2 13266 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  sum_ k  e.  {
x  e.  NN  |  x  ||  ( m  / 
j ) }  ( F `  k )
)  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( ( mmu `  j )  x.  ( F `  k )
) )
5339, 52eqtrd 2475 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
5453sumeq2dv 13195 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) )  =  sum_ j  e.  { x  e.  NN  |  x  ||  m } sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
55 simpr 461 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  NN )
5647adantrr 716 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  (
mmu `  j )  e.  CC )
5751anasss 647 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  ( F `  k )  e.  CC )
5856, 57mulcld 9421 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  (
( mmu `  j
)  x.  ( F `
 k ) )  e.  CC )
5955, 58fsumdvdsdiag 22539 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
60 ssrab2 3452 . . . . . . . . . 10  |-  { x  e.  NN  |  x  ||  m }  C_  NN
61 dvdsdivcl 22536 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  m } )  ->  (
m  /  k )  e.  { x  e.  NN  |  x  ||  m } )
6261adantll 713 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  k )  e. 
{ x  e.  NN  |  x  ||  m }
)
6360, 62sseldi 3369 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  k )  e.  NN )
64 musum 22546 . . . . . . . . 9  |-  ( ( m  /  k )  e.  NN  ->  sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) }  ( mmu `  j
)  =  if ( ( m  /  k
)  =  1 ,  1 ,  0 ) )
6563, 64syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  sum_ j  e. 
{ x  e.  NN  |  x  ||  ( m  /  k ) }  ( mmu `  j
)  =  if ( ( m  /  k
)  =  1 ,  1 ,  0 ) )
6665oveq1d 6121 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( mmu `  j )  x.  ( F `  k )
)  =  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) ) )
67 fzfid 11810 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1 ... ( m  / 
k ) )  e. 
Fin )
68 sgmss 22459 . . . . . . . . . 10  |-  ( ( m  /  k )  e.  NN  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  (
1 ... ( m  / 
k ) ) )
6963, 68syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  (
1 ... ( m  / 
k ) ) )
70 ssfi 7548 . . . . . . . . 9  |-  ( ( ( 1 ... (
m  /  k ) )  e.  Fin  /\  { x  e.  NN  |  x  ||  ( m  / 
k ) }  C_  ( 1 ... (
m  /  k ) ) )  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  e.  Fin )
7167, 69, 70syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  e.  Fin )
721adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  F : NN
--> CC )
73 elrabi 3129 . . . . . . . . 9  |-  ( k  e.  { x  e.  NN  |  x  ||  m }  ->  k  e.  NN )
7472, 73, 50syl2an 477 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( F `  k )  e.  CC )
75 ssrab2 3452 . . . . . . . . . . 11  |-  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  NN
76 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  j  e.  { x  e.  NN  |  x  ||  ( m  / 
k ) } )
7775, 76sseldi 3369 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  j  e.  NN )
7877, 45syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  ( mmu `  j )  e.  ZZ )
7978zcnd 10763 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  ( mmu `  j )  e.  CC )
8071, 74, 79fsummulc1 13267 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( mmu `  j )  x.  ( F `  k )
)  =  sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) }  ( ( mmu `  j )  x.  ( F `  k )
) )
81 oveq1 6113 . . . . . . . . 9  |-  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  =  1  -> 
( if ( ( m  /  k )  =  1 ,  1 ,  0 )  x.  ( F `  k
) )  =  ( 1  x.  ( F `
 k ) ) )
82 oveq1 6113 . . . . . . . . 9  |-  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  =  0  -> 
( if ( ( m  /  k )  =  1 ,  1 ,  0 )  x.  ( F `  k
) )  =  ( 0  x.  ( F `
 k ) ) )
8381, 82ifsb 3817 . . . . . . . 8  |-  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) )  =  if ( ( m  /  k )  =  1 ,  ( 1  x.  ( F `
 k ) ) ,  ( 0  x.  ( F `  k
) ) )
84 nncn 10345 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  m  e.  CC )
8584ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  m  e.  CC )
8673adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  e.  NN )
8786nncnd 10353 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  e.  CC )
88 1cnd 9417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  1  e.  CC )
8986nnne0d 10381 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  =/=  0 )
9085, 87, 88, 89divmuld 10144 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
m  /  k )  =  1  <->  ( k  x.  1 )  =  m ) )
9187mulid1d 9418 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( k  x.  1 )  =  k )
9291eqeq1d 2451 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
k  x.  1 )  =  m  <->  k  =  m ) )
9390, 92bitrd 253 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
m  /  k )  =  1  <->  k  =  m ) )
9474mulid2d 9419 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1  x.  ( F `  k ) )  =  ( F `  k
) )
9574mul02d 9582 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 0  x.  ( F `  k ) )  =  0 )
9693, 94, 95ifbieq12d 3831 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  if (
( m  /  k
)  =  1 ,  ( 1  x.  ( F `  k )
) ,  ( 0  x.  ( F `  k ) ) )  =  if ( k  =  m ,  ( F `  k ) ,  0 ) )
9783, 96syl5eq 2487 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) )  =  if ( k  =  m ,  ( F `  k ) ,  0 ) )
9866, 80, 973eqtr3d 2483 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  sum_ j  e. 
{ x  e.  NN  |  x  ||  ( m  /  k ) }  ( ( mmu `  j )  x.  ( F `  k )
)  =  if ( k  =  m ,  ( F `  k
) ,  0 ) )
9998sumeq2dv 13195 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  m } if ( k  =  m ,  ( F `  k ) ,  0 ) )
10055nnzd 10761 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
101 iddvds 13561 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  m  ||  m )
102100, 101syl 16 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  m  ||  m )
103 breq1 4310 . . . . . . . . 9  |-  ( x  =  m  ->  (
x  ||  m  <->  m  ||  m
) )
104103elrab 3132 . . . . . . . 8  |-  ( m  e.  { x  e.  NN  |  x  ||  m }  <->  ( m  e.  NN  /\  m  ||  m ) )
10555, 102, 104sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  m  e. 
{ x  e.  NN  |  x  ||  m }
)
106105snssd 4033 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  { m }  C_  { x  e.  NN  |  x  ||  m } )
107106sselda 3371 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  k  e.  {
x  e.  NN  |  x  ||  m } )
108107, 74syldan 470 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  ( F `  k )  e.  CC )
109 0cn 9393 . . . . . . 7  |-  0  e.  CC
110 ifcl 3846 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  =  m ,  ( F `
 k ) ,  0 )  e.  CC )
111108, 109, 110sylancl 662 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  e.  CC )
112 eldifsni 4016 . . . . . . . . 9  |-  ( k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } )  ->  k  =/=  m )
113112adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  -> 
k  =/=  m )
114113neneqd 2639 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  ->  -.  k  =  m
)
115 iffalse 3814 . . . . . . 7  |-  ( -.  k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  0 )
116114, 115syl 16 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  0 )
117 fzfid 11810 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1 ... m )  e. 
Fin )
118 sgmss 22459 . . . . . . . 8  |-  ( m  e.  NN  ->  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m ) )
119118adantl 466 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m ) )
120 ssfi 7548 . . . . . . 7  |-  ( ( ( 1 ... m
)  e.  Fin  /\  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m
) )  ->  { x  e.  NN  |  x  ||  m }  e.  Fin )
121117, 119, 120syl2anc 661 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  { x  e.  NN  |  x  ||  m }  e.  Fin )
122106, 111, 116, 121fsumss 13217 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `  k ) ,  0 )  =  sum_ k  e.  { x  e.  NN  |  x  ||  m } if ( k  =  m ,  ( F `  k ) ,  0 ) )
1231ffvelrnda 5858 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
124 iftrue 3812 . . . . . . . 8  |-  ( k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 k ) )
125 fveq2 5706 . . . . . . . 8  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
126124, 125eqtrd 2475 . . . . . . 7  |-  ( k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 m ) )
127126sumsn 13232 . . . . . 6  |-  ( ( m  e.  NN  /\  ( F `  m )  e.  CC )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `
 k ) ,  0 )  =  ( F `  m ) )
12855, 123, 127syl2anc 661 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 m ) )
12999, 122, 1283eqtr2d 2481 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) )  =  ( F `  m
) )
13054, 59, 1293eqtrd 2479 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) )  =  ( F `
 m ) )
131130mpteq2dva 4393 . 2  |-  ( ph  ->  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m }  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) ) )  =  ( m  e.  NN  |->  ( F `  m ) ) )
1322, 131eqtr4d 2478 1  |-  ( ph  ->  F  =  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   {crab 2734    \ cdif 3340    C_ wss 3343   ifcif 3806   {csn 3892   class class class wbr 4307    e. cmpt 4365   -->wf 5429   ` cfv 5433  (class class class)co 6106   Fincfn 7325   CCcc 9295   RRcr 9296   0cc0 9297   1c1 9298    x. cmul 9302    < clt 9433    / cdiv 10008   NNcn 10337   ZZcz 10661   ...cfz 11452   sum_csu 13178    || cdivides 13550   mmucmu 22447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374  ax-pre-sup 9375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-disj 4278  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-2o 6936  df-oadd 6939  df-er 7116  df-map 7231  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-sup 7706  df-oi 7739  df-card 8124  df-cda 8352  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-2 10395  df-3 10396  df-n0 10595  df-z 10662  df-uz 10877  df-q 10969  df-rp 11007  df-fz 11453  df-fzo 11564  df-fl 11657  df-mod 11724  df-seq 11822  df-exp 11881  df-fac 12067  df-bc 12094  df-hash 12119  df-cj 12603  df-re 12604  df-im 12605  df-sqr 12739  df-abs 12740  df-clim 12981  df-sum 13179  df-dvds 13551  df-gcd 13706  df-prm 13779  df-pc 13919  df-mu 22453
This theorem is referenced by:  dchrvmasumlem1  22759  logsqvma2  22807
  Copyright terms: Public domain W3C validator