MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muinv Structured version   Unicode version

Theorem muinv 23333
Description: The Möbius inversion formula. If  G ( n )  =  sum_ k  ||  n F ( k ) for every  n  e.  NN, then  F ( n )  = 
sum_ k  ||  n  mmu ( k ) G ( n  /  k )  = 
sum_ k  ||  n mmu ( n  /  k
) G ( k ), i.e. the Möbius function is the Dirichlet convolution inverse of the constant function  1. (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
muinv.1  |-  ( ph  ->  F : NN --> CC )
muinv.2  |-  ( ph  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) ) )
Assertion
Ref Expression
muinv  |-  ( ph  ->  F  =  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) ) ) )
Distinct variable groups:    k, m, j, n, F    x, j,
k, m, n    ph, j,
k, m
Allowed substitution hints:    ph( x, n)    F( x)    G( x, j, k, m, n)

Proof of Theorem muinv
StepHypRef Expression
1 muinv.1 . . 3  |-  ( ph  ->  F : NN --> CC )
21feqmptd 5927 . 2  |-  ( ph  ->  F  =  ( m  e.  NN  |->  ( F `
 m ) ) )
3 muinv.2 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) ) )
43ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) )
54fveq1d 5874 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( G `  ( m  /  j
) )  =  ( ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) ) )
6 breq1 4456 . . . . . . . . . . . . . 14  |-  ( x  =  j  ->  (
x  ||  m  <->  j  ||  m ) )
76elrab 3266 . . . . . . . . . . . . 13  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  <->  ( j  e.  NN  /\  j  ||  m ) )
87simprbi 464 . . . . . . . . . . . 12  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  ->  j  ||  m )
98adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  ||  m )
10 elrabi 3263 . . . . . . . . . . . . . 14  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  ->  j  e.  NN )
1110adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  e.  NN )
1211nnzd 10977 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  e.  ZZ )
1311nnne0d 10592 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  =/=  0 )
14 nnz 10898 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  ZZ )
1514ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  m  e.  ZZ )
16 dvdsval2 13866 . . . . . . . . . . . 12  |-  ( ( j  e.  ZZ  /\  j  =/=  0  /\  m  e.  ZZ )  ->  (
j  ||  m  <->  ( m  /  j )  e.  ZZ ) )
1712, 13, 15, 16syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( j  ||  m  <->  ( m  / 
j )  e.  ZZ ) )
189, 17mpbid 210 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  j )  e.  ZZ )
19 nnre 10555 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  RR )
20 nngt0 10577 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  0  <  m )
2119, 20jca 532 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
m  e.  RR  /\  0  <  m ) )
2221ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  e.  RR  /\  0  < 
m ) )
23 nnre 10555 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  j  e.  RR )
24 nngt0 10577 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  0  <  j )
2523, 24jca 532 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
j  e.  RR  /\  0  <  j ) )
2611, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( j  e.  RR  /\  0  < 
j ) )
27 divgt0 10422 . . . . . . . . . . 11  |-  ( ( ( m  e.  RR  /\  0  <  m )  /\  ( j  e.  RR  /\  0  < 
j ) )  -> 
0  <  ( m  /  j ) )
2822, 26, 27syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  0  <  ( m  /  j ) )
29 elnnz 10886 . . . . . . . . . 10  |-  ( ( m  /  j )  e.  NN  <->  ( (
m  /  j )  e.  ZZ  /\  0  <  ( m  /  j
) ) )
3018, 28, 29sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  j )  e.  NN )
31 breq2 4457 . . . . . . . . . . . 12  |-  ( n  =  ( m  / 
j )  ->  (
x  ||  n  <->  x  ||  (
m  /  j ) ) )
3231rabbidv 3110 . . . . . . . . . . 11  |-  ( n  =  ( m  / 
j )  ->  { x  e.  NN  |  x  ||  n }  =  {
x  e.  NN  |  x  ||  ( m  / 
j ) } )
3332sumeq1d 13502 . . . . . . . . . 10  |-  ( n  =  ( m  / 
j )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
)  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
) )
34 eqid 2467 . . . . . . . . . 10  |-  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) )  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) )
35 sumex 13489 . . . . . . . . . 10  |-  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
)  e.  _V
3633, 34, 35fvmpt 5957 . . . . . . . . 9  |-  ( ( m  /  j )  e.  NN  ->  (
( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
3730, 36syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
385, 37eqtrd 2508 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( G `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
3938oveq2d 6311 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) )  =  ( ( mmu `  j
)  x.  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
) ) )
40 fzfid 12063 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1 ... ( m  / 
j ) )  e. 
Fin )
41 sgmss 23244 . . . . . . . . 9  |-  ( ( m  /  j )  e.  NN  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  C_  (
1 ... ( m  / 
j ) ) )
4230, 41syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  C_  (
1 ... ( m  / 
j ) ) )
43 ssfi 7752 . . . . . . . 8  |-  ( ( ( 1 ... (
m  /  j ) )  e.  Fin  /\  { x  e.  NN  |  x  ||  ( m  / 
j ) }  C_  ( 1 ... (
m  /  j ) ) )  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  e.  Fin )
4440, 42, 43syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  e.  Fin )
45 mucl 23279 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
mmu `  j )  e.  ZZ )
4611, 45syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( mmu `  j )  e.  ZZ )
4746zcnd 10979 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( mmu `  j )  e.  CC )
481ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  F : NN
--> CC )
49 elrabi 3263 . . . . . . . 8  |-  ( k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ->  k  e.  NN )
50 ffvelrn 6030 . . . . . . . 8  |-  ( ( F : NN --> CC  /\  k  e.  NN )  ->  ( F `  k
)  e.  CC )
5148, 49, 50syl2an 477 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m } )  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } )  ->  ( F `  k )  e.  CC )
5244, 47, 51fsummulc2 13578 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  sum_ k  e.  {
x  e.  NN  |  x  ||  ( m  / 
j ) }  ( F `  k )
)  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( ( mmu `  j )  x.  ( F `  k )
) )
5339, 52eqtrd 2508 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
5453sumeq2dv 13504 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) )  =  sum_ j  e.  { x  e.  NN  |  x  ||  m } sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
55 simpr 461 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  NN )
5647adantrr 716 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  (
mmu `  j )  e.  CC )
5751anasss 647 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  ( F `  k )  e.  CC )
5856, 57mulcld 9628 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  (
( mmu `  j
)  x.  ( F `
 k ) )  e.  CC )
5955, 58fsumdvdsdiag 23324 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
60 ssrab2 3590 . . . . . . . . . 10  |-  { x  e.  NN  |  x  ||  m }  C_  NN
61 dvdsdivcl 23321 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  m } )  ->  (
m  /  k )  e.  { x  e.  NN  |  x  ||  m } )
6261adantll 713 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  k )  e. 
{ x  e.  NN  |  x  ||  m }
)
6360, 62sseldi 3507 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  k )  e.  NN )
64 musum 23331 . . . . . . . . 9  |-  ( ( m  /  k )  e.  NN  ->  sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) }  ( mmu `  j
)  =  if ( ( m  /  k
)  =  1 ,  1 ,  0 ) )
6563, 64syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  sum_ j  e. 
{ x  e.  NN  |  x  ||  ( m  /  k ) }  ( mmu `  j
)  =  if ( ( m  /  k
)  =  1 ,  1 ,  0 ) )
6665oveq1d 6310 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( mmu `  j )  x.  ( F `  k )
)  =  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) ) )
67 fzfid 12063 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1 ... ( m  / 
k ) )  e. 
Fin )
68 sgmss 23244 . . . . . . . . . 10  |-  ( ( m  /  k )  e.  NN  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  (
1 ... ( m  / 
k ) ) )
6963, 68syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  (
1 ... ( m  / 
k ) ) )
70 ssfi 7752 . . . . . . . . 9  |-  ( ( ( 1 ... (
m  /  k ) )  e.  Fin  /\  { x  e.  NN  |  x  ||  ( m  / 
k ) }  C_  ( 1 ... (
m  /  k ) ) )  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  e.  Fin )
7167, 69, 70syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  e.  Fin )
721adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  F : NN
--> CC )
73 elrabi 3263 . . . . . . . . 9  |-  ( k  e.  { x  e.  NN  |  x  ||  m }  ->  k  e.  NN )
7472, 73, 50syl2an 477 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( F `  k )  e.  CC )
75 ssrab2 3590 . . . . . . . . . . 11  |-  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  NN
76 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  j  e.  { x  e.  NN  |  x  ||  ( m  / 
k ) } )
7775, 76sseldi 3507 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  j  e.  NN )
7877, 45syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  ( mmu `  j )  e.  ZZ )
7978zcnd 10979 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  ( mmu `  j )  e.  CC )
8071, 74, 79fsummulc1 13579 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( mmu `  j )  x.  ( F `  k )
)  =  sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) }  ( ( mmu `  j )  x.  ( F `  k )
) )
81 ovif 6374 . . . . . . . 8  |-  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) )  =  if ( ( m  /  k )  =  1 ,  ( 1  x.  ( F `
 k ) ) ,  ( 0  x.  ( F `  k
) ) )
82 nncn 10556 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  m  e.  CC )
8382ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  m  e.  CC )
8473adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  e.  NN )
8584nncnd 10564 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  e.  CC )
86 1cnd 9624 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  1  e.  CC )
8784nnne0d 10592 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  =/=  0 )
8883, 85, 86, 87divmuld 10354 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
m  /  k )  =  1  <->  ( k  x.  1 )  =  m ) )
8985mulid1d 9625 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( k  x.  1 )  =  k )
9089eqeq1d 2469 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
k  x.  1 )  =  m  <->  k  =  m ) )
9188, 90bitrd 253 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
m  /  k )  =  1  <->  k  =  m ) )
9274mulid2d 9626 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1  x.  ( F `  k ) )  =  ( F `  k
) )
9374mul02d 9789 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 0  x.  ( F `  k ) )  =  0 )
9491, 92, 93ifbieq12d 3972 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  if (
( m  /  k
)  =  1 ,  ( 1  x.  ( F `  k )
) ,  ( 0  x.  ( F `  k ) ) )  =  if ( k  =  m ,  ( F `  k ) ,  0 ) )
9581, 94syl5eq 2520 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) )  =  if ( k  =  m ,  ( F `  k ) ,  0 ) )
9666, 80, 953eqtr3d 2516 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  sum_ j  e. 
{ x  e.  NN  |  x  ||  ( m  /  k ) }  ( ( mmu `  j )  x.  ( F `  k )
)  =  if ( k  =  m ,  ( F `  k
) ,  0 ) )
9796sumeq2dv 13504 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  m } if ( k  =  m ,  ( F `  k ) ,  0 ) )
9855nnzd 10977 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
99 iddvds 13874 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  m  ||  m )
10098, 99syl 16 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  m  ||  m )
101 breq1 4456 . . . . . . . . 9  |-  ( x  =  m  ->  (
x  ||  m  <->  m  ||  m
) )
102101elrab 3266 . . . . . . . 8  |-  ( m  e.  { x  e.  NN  |  x  ||  m }  <->  ( m  e.  NN  /\  m  ||  m ) )
10355, 100, 102sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  m  e. 
{ x  e.  NN  |  x  ||  m }
)
104103snssd 4178 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  { m }  C_  { x  e.  NN  |  x  ||  m } )
105104sselda 3509 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  k  e.  {
x  e.  NN  |  x  ||  m } )
106105, 74syldan 470 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  ( F `  k )  e.  CC )
107 0cn 9600 . . . . . . 7  |-  0  e.  CC
108 ifcl 3987 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  =  m ,  ( F `
 k ) ,  0 )  e.  CC )
109106, 107, 108sylancl 662 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  e.  CC )
110 eldifsni 4159 . . . . . . . . 9  |-  ( k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } )  ->  k  =/=  m )
111110adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  -> 
k  =/=  m )
112111neneqd 2669 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  ->  -.  k  =  m
)
113112iffalsed 3956 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  0 )
114 fzfid 12063 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1 ... m )  e. 
Fin )
115 sgmss 23244 . . . . . . . 8  |-  ( m  e.  NN  ->  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m ) )
116115adantl 466 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m ) )
117 ssfi 7752 . . . . . . 7  |-  ( ( ( 1 ... m
)  e.  Fin  /\  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m
) )  ->  { x  e.  NN  |  x  ||  m }  e.  Fin )
118114, 116, 117syl2anc 661 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  { x  e.  NN  |  x  ||  m }  e.  Fin )
119104, 109, 113, 118fsumss 13526 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `  k ) ,  0 )  =  sum_ k  e.  { x  e.  NN  |  x  ||  m } if ( k  =  m ,  ( F `  k ) ,  0 ) )
1201ffvelrnda 6032 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
121 iftrue 3951 . . . . . . . 8  |-  ( k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 k ) )
122 fveq2 5872 . . . . . . . 8  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
123121, 122eqtrd 2508 . . . . . . 7  |-  ( k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 m ) )
124123sumsn 13542 . . . . . 6  |-  ( ( m  e.  NN  /\  ( F `  m )  e.  CC )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `
 k ) ,  0 )  =  ( F `  m ) )
12555, 120, 124syl2anc 661 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 m ) )
12697, 119, 1253eqtr2d 2514 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) )  =  ( F `  m
) )
12754, 59, 1263eqtrd 2512 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) )  =  ( F `
 m ) )
128127mpteq2dva 4539 . 2  |-  ( ph  ->  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m }  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) ) )  =  ( m  e.  NN  |->  ( F `  m ) ) )
1292, 128eqtr4d 2511 1  |-  ( ph  ->  F  =  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   {crab 2821    \ cdif 3478    C_ wss 3481   ifcif 3945   {csn 4033   class class class wbr 4453    |-> cmpt 4511   -->wf 5590   ` cfv 5594  (class class class)co 6295   Fincfn 7528   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    x. cmul 9509    < clt 9640    / cdiv 10218   NNcn 10548   ZZcz 10876   ...cfz 11684   sum_csu 13487    || cdivides 13863   mmucmu 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-disj 4424  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-sum 13488  df-dvds 13864  df-gcd 14020  df-prm 14093  df-pc 14236  df-mu 23238
This theorem is referenced by:  dchrvmasumlem1  23544  logsqvma2  23592
  Copyright terms: Public domain W3C validator