MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mudivsum Structured version   Unicode version

Theorem mudivsum 24228
Description: Asymptotic formula for  sum_ n  <_  x ,  mmu (
n )  /  n  =  O(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mudivsum  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem mudivsum
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 9647 . . 3  |-  ( T. 
->  1  e.  RR )
2 reex 9619 . . . . . . 7  |-  RR  e.  _V
3 rpssre 11301 . . . . . . 7  |-  RR+  C_  RR
42, 3ssexi 4561 . . . . . 6  |-  RR+  e.  _V
54a1i 11 . . . . 5  |-  ( T. 
->  RR+  e.  _V )
6 fzfid 12172 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
7 rpre 11297 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
8 elfznn 11815 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
9 nndivre 10634 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  /  n
)  e.  RR )
107, 8, 9syl2an 479 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
1110recnd 9658 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
12 reflcl 12018 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  e.  RR )
1310, 12syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
1413recnd 9658 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
1511, 14subcld 9975 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  e.  CC )
168adantl 467 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
17 mucl 23928 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
1816, 17syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1918zcnd 11030 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
2015, 19mulcld 9652 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
216, 20fsumcl 13766 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
22 rpcn 11299 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  CC )
23 rpne0 11306 . . . . . . 7  |-  ( x  e.  RR+  ->  x  =/=  0 )
2421, 22, 23divcld 10372 . . . . . 6  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  e.  CC )
2524adantl 467 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  e.  CC )
26 ovex 6324 . . . . . 6  |-  ( 1  /  x )  e. 
_V
2726a1i 11 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  /  x )  e. 
_V )
28 eqidd 2421 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) ) )
29 eqidd 2421 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  =  ( x  e.  RR+  |->  ( 1  /  x ) ) )
305, 25, 27, 28, 29offval2 6553 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
313a1i 11 . . . . . 6  |-  ( T. 
->  RR+  C_  RR )
3221adantr 466 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
3322adantr 466 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  CC )
3423adantr 466 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  =/=  0 )
3532, 33, 34absdivd 13484 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  ( abs `  x
) ) )
36 rprege0 11305 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
37 absid 13327 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
3836, 37syl 17 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( abs `  x )  =  x )
3938adantr 466 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  x )  =  x )
4039oveq2d 6312 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  ( abs `  x
) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x ) )
4135, 40eqtrd 2461 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x ) )
4232abscld 13465 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
43 fzfid 12172 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
4420adantlr 719 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  e.  CC )
4544abscld 13465 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
4643, 45fsumrecl 13767 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
477adantr 466 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR )
4843, 44fsumabs 13828 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) ) )
49 reflcl 12018 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
5047, 49syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  RR )
51 1red 9647 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
5215adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  e.  CC )
53 elfznn 11815 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
5453ssriv 3465 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... ( |_ `  x ) )  C_  NN
5554a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  C_  NN )
5655sselda 3461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
5756, 17syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
5857zcnd 11030 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
5952, 58absmuld 13483 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  =  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) ) )
6052abscld 13465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  e.  RR )
6158abscld 13465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  n )
)  e.  RR )
6252absge0d 13473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) ) )
6358absge0d 13473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( mmu `  n ) ) )
64 simpl 458 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR+ )
658nnrpd 11328 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
66 rpdivcl 11314 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
6764, 65, 66syl2an 479 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
683, 67sseldi 3459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
6968, 12syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
70 flle 12021 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  <_ 
( x  /  n
) )
7168, 70syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) )
7269, 68, 71abssubge0d 13461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) ) )
73 fracle1 12025 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  /  n )  e.  RR  ->  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  <_  1 )
7468, 73syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  <_  1 )
7572, 74eqbrtrd 4437 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  <_  1 )
76 mule1 23935 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
7756, 76syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  n )
)  <_  1 )
7860, 51, 61, 51, 62, 63, 75, 77lemul12ad 10538 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) )  <_ 
( 1  x.  1 ) )
79 1t1e1 10746 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
8078, 79syl6breq 4456 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) )  <_ 
1 )
8159, 80eqbrtrd 4437 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  1 )
8243, 45, 51, 81fsumle 13826 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) 1 )
83 1cnd 9648 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  CC )
84 fsumconst 13818 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  1 ) )
8543, 83, 84syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  1 ) )
86 flge1nn 12041 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
877, 86sylan 473 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  NN )
8887nnnn0d 10914 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e. 
NN0 )
89 hashfz1 12515 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
9088, 89syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( # `
 ( 1 ... ( |_ `  x
) ) )  =  ( |_ `  x
) )
9190oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( # `  ( 1 ... ( |_ `  x ) ) )  x.  1 )  =  ( ( |_ `  x )  x.  1 ) )
9250recnd 9658 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  CC )
9392mulid1d 9649 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( |_ `  x
)  x.  1 )  =  ( |_ `  x ) )
9485, 91, 933eqtrd 2465 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( |_
`  x ) )
9582, 94breqtrd 4441 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( |_ `  x ) )
96 flle 12021 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
9747, 96syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  <_  x )
9846, 50, 47, 95, 97letrd 9781 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  x )
9942, 46, 47, 48, 98letrd 9781 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  x )
10033mulid1d 9649 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  1 )  =  x )
10199, 100breqtrrd 4443 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( x  x.  1 ) )
102 1red 9647 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  RR )
10342, 102, 64ledivmuld 11380 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x )  <_ 
1  <->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( x  x.  1 ) ) )
104101, 103mpbird 235 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x )  <_ 
1 )
10541, 104eqbrtrd 4437 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  <_ 
1 )
106105adantl 467 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  <_ 
1 )
10731, 25, 1, 1, 106elo1d 13567 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  e.  O(1) )
108 ax-1cn 9586 . . . . . . 7  |-  1  e.  CC
109 divrcnv 13877 . . . . . . 7  |-  ( 1  e.  CC  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0 )
110108, 109ax-mp 5 . . . . . 6  |-  ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0
111 rlimo1 13647 . . . . . 6  |-  ( ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )
112110, 111mp1i 13 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  e.  O(1) )
113 o1add 13644 . . . . 5  |-  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )  ->  ( (
x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
114107, 112, 113syl2anc 665 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
11530, 114eqeltrrd 2509 . . 3  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )  e.  O(1) )
116 ovex 6324 . . . 4  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) )  e.  _V
117116a1i 11 . . 3  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) )  e.  _V )
11818zred 11029 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
119118, 16nndivred 10647 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
120119recnd 9658 . . . . 5  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
1216, 120fsumcl 13766 . . . 4  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
122121adantl 467 . . 3  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
123121adantr 466 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
124123abscld 13465 . . . . 5  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  e.  RR )
125120adantlr 719 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  CC )
12643, 33, 125fsummulc2 13812 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( x  x.  ( ( mmu `  n )  /  n
) ) )
12714, 19mulcld 9652 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  ( x  /  n ) )  x.  ( mmu `  n
) )  e.  CC )
128127adantlr 719 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( |_
`  ( x  /  n ) )  x.  ( mmu `  n
) )  e.  CC )
12943, 44, 128fsumadd 13772 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  +  ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) ) )
13011adantlr 719 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
13114adantlr 719 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
132130, 131npcand 9979 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  +  ( |_ `  (
x  /  n ) ) )  =  ( x  /  n ) )
133132oveq1d 6311 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  +  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  =  ( ( x  /  n
)  x.  ( mmu `  n ) ) )
13452, 131, 58adddird 9657 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  +  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  =  ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) ) )
13533adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
13656nnrpd 11328 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
137 rpcnne0 11308 . . . . . . . . . . . . . 14  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
138136, 137syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
139 div23 10278 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( mmu `  n ) )  /  n )  =  ( ( x  /  n
)  x.  ( mmu `  n ) ) )
140 divass 10277 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( mmu `  n ) )  /  n )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
141139, 140eqtr3d 2463 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  /  n )  x.  ( mmu `  n
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
142135, 58, 138, 141syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  x.  ( mmu `  n
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
143133, 134, 1423eqtr3d 2469 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
144143sumeq2dv 13736 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  +  ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( x  x.  (
( mmu `  n
)  /  n ) ) )
145 eqidd 2421 . . . . . . . . . . . . 13  |-  ( k  =  ( n  x.  m )  ->  (
mmu `  n )  =  ( mmu `  n ) )
146 ssrab2 3543 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  k }  C_  NN
147 simprr 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
148146, 147sseldi 3459 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  NN )
149148, 17syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  ZZ )
150149zcnd 11030 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  CC )
151145, 47, 150dvdsflsumcom 23977 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( mmu `  n ) )
1521503impb 1201 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } )  ->  (
mmu `  n )  e.  CC )
153152mulid1d 9649 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } )  ->  (
( mmu `  n
)  x.  1 )  =  ( mmu `  n ) )
1541532sumeq2dv 13738 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  1 )  =  sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )
)
155 eqidd 2421 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  1  =  1 )
156 nnuz 11183 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
15787, 156syl6eleq 2518 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
158 eluzfz1 11793 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
159157, 158syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
160 1cnd 9648 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
161155, 43, 55, 159, 160musumsum 23981 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  1 )  =  1 )
162154, 161eqtr3d 2463 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )  =  1 )
163 fzfid 12172 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  n ) ) )  e.  Fin )
164 fsumconst 13818 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( |_ `  ( x  /  n ) ) )  e.  Fin  /\  (
mmu `  n )  e.  CC )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( mmu `  n
)  =  ( (
# `  ( 1 ... ( |_ `  (
x  /  n ) ) ) )  x.  ( mmu `  n
) ) )
165163, 58, 164syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( mmu `  n
)  =  ( (
# `  ( 1 ... ( |_ `  (
x  /  n ) ) ) )  x.  ( mmu `  n
) ) )
166 rprege0 11305 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR+  ->  ( ( x  /  n )  e.  RR  /\  0  <_  ( x  /  n
) ) )
167 flge0nn0 12040 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  /  n
)  e.  RR  /\  0  <_  ( x  /  n ) )  -> 
( |_ `  (
x  /  n ) )  e.  NN0 )
168 hashfz1 12515 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( x  /  n ) )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  =  ( |_
`  ( x  /  n ) ) )
16967, 166, 167, 1684syl 19 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( # `  (
1 ... ( |_ `  ( x  /  n
) ) ) )  =  ( |_ `  ( x  /  n
) ) )
170169oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( # `  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  x.  ( mmu `  n ) )  =  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )
171165, 170eqtrd 2461 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( mmu `  n
)  =  ( ( |_ `  ( x  /  n ) )  x.  ( mmu `  n ) ) )
172171sumeq2dv 13736 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( mmu `  n )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )
173151, 162, 1723eqtr3rd 2470 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
)  =  1 )
174173oveq2d 6312 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
175129, 144, 1743eqtr3d 2469 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( x  x.  (
( mmu `  n
)  /  n ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
176126, 175eqtrd 2461 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
177176oveq1d 6311 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
) )
178123, 33, 34divcan3d 10377 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  /  x )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )
179 rpcnne0 11308 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
180179adantr 466 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  e.  CC  /\  x  =/=  0 ) )
181 divdir 10282 . . . . . . . 8  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC  /\  1  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  -> 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
18232, 83, 180, 181syl3anc 1264 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
183177, 178, 1823eqtr3d 2469 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
184183fveq2d 5876 . . . . 5  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  =  ( abs `  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
185 eqle 9725 . . . . 5  |-  ( ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  e.  RR  /\  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  =  ( abs `  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
186124, 184, 185syl2anc 665 . . . 4  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  <_  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
187186adantl 467 . . 3  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
1881, 115, 117, 122, 187o1le 13683 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O(1) )
189188trud 1446 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 370    /\ w3a 982    = wceq 1437   T. wtru 1438    e. wcel 1867    =/= wne 2616   {crab 2777   _Vcvv 3078    C_ wss 3433   class class class wbr 4417    |-> cmpt 4475   ` cfv 5592  (class class class)co 6296    oFcof 6534   Fincfn 7568   CCcc 9526   RRcr 9527   0cc0 9528   1c1 9529    + caddc 9531    x. cmul 9533    <_ cle 9665    - cmin 9849    / cdiv 10258   NNcn 10598   NN0cn0 10858   ZZcz 10926   ZZ>=cuz 11148   RR+crp 11291   ...cfz 11771   |_cfl 12012   #chash 12501   abscabs 13265    ~~> r crli 13516   O(1)co1 13517   sum_csu 13719    || cdvds 14272   mmucmu 23881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-disj 4389  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-pm 7474  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-sup 7953  df-inf 7954  df-oi 8016  df-card 8363  df-cda 8587  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-q 11254  df-rp 11292  df-ico 11630  df-fz 11772  df-fzo 11903  df-fl 12014  df-mod 12083  df-seq 12200  df-exp 12259  df-fac 12446  df-bc 12474  df-hash 12502  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-clim 13519  df-rlim 13520  df-o1 13521  df-lo1 13522  df-sum 13720  df-dvds 14273  df-gcd 14432  df-prm 14583  df-pc 14739  df-mu 23887
This theorem is referenced by:  mulogsumlem  24229  mulog2sumlem3  24234  selberglem1  24243
  Copyright terms: Public domain W3C validator