MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mudivsum Structured version   Unicode version

Theorem mudivsum 23840
Description: Asymptotic formula for  sum_ n  <_  x ,  mmu (
n )  /  n  =  O(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mudivsum  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem mudivsum
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 9628 . . 3  |-  ( T. 
->  1  e.  RR )
2 reex 9600 . . . . . . 7  |-  RR  e.  _V
3 rpssre 11255 . . . . . . 7  |-  RR+  C_  RR
42, 3ssexi 4601 . . . . . 6  |-  RR+  e.  _V
54a1i 11 . . . . 5  |-  ( T. 
->  RR+  e.  _V )
6 fzfid 12085 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
7 rpre 11251 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
8 elfznn 11739 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
9 nndivre 10592 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  /  n
)  e.  RR )
107, 8, 9syl2an 477 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
1110recnd 9639 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
12 reflcl 11935 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  e.  RR )
1310, 12syl 16 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
1413recnd 9639 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
1511, 14subcld 9950 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  e.  CC )
168adantl 466 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
17 mucl 23540 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
1816, 17syl 16 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1918zcnd 10991 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
2015, 19mulcld 9633 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
216, 20fsumcl 13566 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
22 rpcn 11253 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  CC )
23 rpne0 11260 . . . . . . 7  |-  ( x  e.  RR+  ->  x  =/=  0 )
2421, 22, 23divcld 10341 . . . . . 6  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  e.  CC )
2524adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  e.  CC )
26 ovex 6324 . . . . . 6  |-  ( 1  /  x )  e. 
_V
2726a1i 11 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  /  x )  e. 
_V )
28 eqidd 2458 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) ) )
29 eqidd 2458 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  =  ( x  e.  RR+  |->  ( 1  /  x ) ) )
305, 25, 27, 28, 29offval2 6555 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
313a1i 11 . . . . . 6  |-  ( T. 
->  RR+  C_  RR )
3221adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
3322adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  CC )
3423adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  =/=  0 )
3532, 33, 34absdivd 13297 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  ( abs `  x
) ) )
36 rprege0 11259 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
37 absid 13140 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
3836, 37syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( abs `  x )  =  x )
3938adantr 465 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  x )  =  x )
4039oveq2d 6312 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  ( abs `  x
) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x ) )
4135, 40eqtrd 2498 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x ) )
4232abscld 13278 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
43 fzfid 12085 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
4420adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  e.  CC )
4544abscld 13278 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
4643, 45fsumrecl 13567 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
477adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR )
4843, 44fsumabs 13626 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) ) )
49 reflcl 11935 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
5047, 49syl 16 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  RR )
51 1red 9628 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
5215adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  e.  CC )
53 elfznn 11739 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
5453ssriv 3503 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... ( |_ `  x ) )  C_  NN
5554a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  C_  NN )
5655sselda 3499 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
5756, 17syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
5857zcnd 10991 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
5952, 58absmuld 13296 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  =  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) ) )
6052abscld 13278 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  e.  RR )
6158abscld 13278 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  n )
)  e.  RR )
6252absge0d 13286 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) ) )
6358absge0d 13286 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( mmu `  n ) ) )
64 simpl 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR+ )
658nnrpd 11280 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
66 rpdivcl 11267 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
6764, 65, 66syl2an 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
683, 67sseldi 3497 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
6968, 12syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
70 flle 11938 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  <_ 
( x  /  n
) )
7168, 70syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) )
7269, 68, 71abssubge0d 13274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) ) )
73 fracle1 11942 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  /  n )  e.  RR  ->  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  <_  1 )
7468, 73syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  <_  1 )
7572, 74eqbrtrd 4476 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  <_  1 )
76 mule1 23547 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
7756, 76syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  n )
)  <_  1 )
7860, 51, 61, 51, 62, 63, 75, 77lemul12ad 10508 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) )  <_ 
( 1  x.  1 ) )
79 1t1e1 10704 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
8078, 79syl6breq 4495 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) )  <_ 
1 )
8159, 80eqbrtrd 4476 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  1 )
8243, 45, 51, 81fsumle 13624 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) 1 )
83 1cnd 9629 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  CC )
84 fsumconst 13616 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  1 ) )
8543, 83, 84syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  1 ) )
86 flge1nn 11957 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
877, 86sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  NN )
8887nnnn0d 10873 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e. 
NN0 )
89 hashfz1 12421 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
9088, 89syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( # `
 ( 1 ... ( |_ `  x
) ) )  =  ( |_ `  x
) )
9190oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( # `  ( 1 ... ( |_ `  x ) ) )  x.  1 )  =  ( ( |_ `  x )  x.  1 ) )
9250recnd 9639 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  CC )
9392mulid1d 9630 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( |_ `  x
)  x.  1 )  =  ( |_ `  x ) )
9485, 91, 933eqtrd 2502 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( |_
`  x ) )
9582, 94breqtrd 4480 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( |_ `  x ) )
96 flle 11938 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
9747, 96syl 16 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  <_  x )
9846, 50, 47, 95, 97letrd 9756 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  x )
9942, 46, 47, 48, 98letrd 9756 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  x )
10033mulid1d 9630 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  1 )  =  x )
10199, 100breqtrrd 4482 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( x  x.  1 ) )
102 1red 9628 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  RR )
10342, 102, 64ledivmuld 11330 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x )  <_ 
1  <->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( x  x.  1 ) ) )
104101, 103mpbird 232 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x )  <_ 
1 )
10541, 104eqbrtrd 4476 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  <_ 
1 )
106105adantl 466 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  <_ 
1 )
10731, 25, 1, 1, 106elo1d 13370 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  e.  O(1) )
108 ax-1cn 9567 . . . . . . 7  |-  1  e.  CC
109 divrcnv 13675 . . . . . . 7  |-  ( 1  e.  CC  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0 )
110108, 109ax-mp 5 . . . . . 6  |-  ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0
111 rlimo1 13450 . . . . . 6  |-  ( ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )
112110, 111mp1i 12 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  e.  O(1) )
113 o1add 13447 . . . . 5  |-  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )  ->  ( (
x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
114107, 112, 113syl2anc 661 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
11530, 114eqeltrrd 2546 . . 3  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )  e.  O(1) )
116 ovex 6324 . . . 4  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) )  e.  _V
117116a1i 11 . . 3  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) )  e.  _V )
11818zred 10990 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
119118, 16nndivred 10605 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
120119recnd 9639 . . . . 5  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
1216, 120fsumcl 13566 . . . 4  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
122121adantl 466 . . 3  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
123121adantr 465 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
124123abscld 13278 . . . . 5  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  e.  RR )
125120adantlr 714 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  CC )
12643, 33, 125fsummulc2 13610 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( x  x.  ( ( mmu `  n )  /  n
) ) )
12714, 19mulcld 9633 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  ( x  /  n ) )  x.  ( mmu `  n
) )  e.  CC )
128127adantlr 714 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( |_
`  ( x  /  n ) )  x.  ( mmu `  n
) )  e.  CC )
12943, 44, 128fsumadd 13572 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  +  ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) ) )
13011adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
13114adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
132130, 131npcand 9954 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  +  ( |_ `  (
x  /  n ) ) )  =  ( x  /  n ) )
133132oveq1d 6311 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  +  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  =  ( ( x  /  n
)  x.  ( mmu `  n ) ) )
13452, 131, 58adddird 9638 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  +  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  =  ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) ) )
13533adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
13656nnrpd 11280 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
137 rpcnne0 11262 . . . . . . . . . . . . . 14  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
138136, 137syl 16 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
139 div23 10247 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( mmu `  n ) )  /  n )  =  ( ( x  /  n
)  x.  ( mmu `  n ) ) )
140 divass 10246 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( mmu `  n ) )  /  n )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
141139, 140eqtr3d 2500 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  /  n )  x.  ( mmu `  n
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
142135, 58, 138, 141syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  x.  ( mmu `  n
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
143133, 134, 1423eqtr3d 2506 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
144143sumeq2dv 13536 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  +  ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( x  x.  (
( mmu `  n
)  /  n ) ) )
145 eqidd 2458 . . . . . . . . . . . . 13  |-  ( k  =  ( n  x.  m )  ->  (
mmu `  n )  =  ( mmu `  n ) )
146 ssrab2 3581 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  k }  C_  NN
147 simprr 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
148146, 147sseldi 3497 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  NN )
149148, 17syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  ZZ )
150149zcnd 10991 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  CC )
151145, 47, 150dvdsflsumcom 23589 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( mmu `  n ) )
1521503impb 1192 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } )  ->  (
mmu `  n )  e.  CC )
153152mulid1d 9630 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } )  ->  (
( mmu `  n
)  x.  1 )  =  ( mmu `  n ) )
1541532sumeq2dv 13538 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  1 )  =  sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )
)
155 eqidd 2458 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  1  =  1 )
156 nnuz 11141 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
15787, 156syl6eleq 2555 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
158 eluzfz1 11718 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
159157, 158syl 16 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
160 1cnd 9629 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
161155, 43, 55, 159, 160musumsum 23593 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  1 )  =  1 )
162154, 161eqtr3d 2500 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )  =  1 )
163 fzfid 12085 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  n ) ) )  e.  Fin )
164 fsumconst 13616 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( |_ `  ( x  /  n ) ) )  e.  Fin  /\  (
mmu `  n )  e.  CC )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( mmu `  n
)  =  ( (
# `  ( 1 ... ( |_ `  (
x  /  n ) ) ) )  x.  ( mmu `  n
) ) )
165163, 58, 164syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( mmu `  n
)  =  ( (
# `  ( 1 ... ( |_ `  (
x  /  n ) ) ) )  x.  ( mmu `  n
) ) )
166 rprege0 11259 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR+  ->  ( ( x  /  n )  e.  RR  /\  0  <_  ( x  /  n
) ) )
167 flge0nn0 11956 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  /  n
)  e.  RR  /\  0  <_  ( x  /  n ) )  -> 
( |_ `  (
x  /  n ) )  e.  NN0 )
168 hashfz1 12421 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( x  /  n ) )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  =  ( |_
`  ( x  /  n ) ) )
16967, 166, 167, 1684syl 21 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( # `  (
1 ... ( |_ `  ( x  /  n
) ) ) )  =  ( |_ `  ( x  /  n
) ) )
170169oveq1d 6311 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( # `  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  x.  ( mmu `  n ) )  =  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )
171165, 170eqtrd 2498 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( mmu `  n
)  =  ( ( |_ `  ( x  /  n ) )  x.  ( mmu `  n ) ) )
172171sumeq2dv 13536 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( mmu `  n )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )
173151, 162, 1723eqtr3rd 2507 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
)  =  1 )
174173oveq2d 6312 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
175129, 144, 1743eqtr3d 2506 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( x  x.  (
( mmu `  n
)  /  n ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
176126, 175eqtrd 2498 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
177176oveq1d 6311 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
) )
178123, 33, 34divcan3d 10346 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  /  x )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )
179 rpcnne0 11262 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
180179adantr 465 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  e.  CC  /\  x  =/=  0 ) )
181 divdir 10251 . . . . . . . 8  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC  /\  1  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  -> 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
18232, 83, 180, 181syl3anc 1228 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
183177, 178, 1823eqtr3d 2506 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
184183fveq2d 5876 . . . . 5  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  =  ( abs `  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
185 eqle 9704 . . . . 5  |-  ( ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  e.  RR  /\  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  =  ( abs `  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
186124, 184, 185syl2anc 661 . . . 4  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  <_  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
187186adantl 466 . . 3  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
1881, 115, 117, 122, 187o1le 13486 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O(1) )
189188trud 1404 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 973    = wceq 1395   T. wtru 1396    e. wcel 1819    =/= wne 2652   {crab 2811   _Vcvv 3109    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515   ` cfv 5594  (class class class)co 6296    oFcof 6537   Fincfn 7535   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   ...cfz 11697   |_cfl 11929   #chash 12407   abscabs 13078    ~~> r crli 13319   O(1)co1 13320   sum_csu 13519    || cdvds 13997   mmucmu 23493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-ico 11560  df-fz 11698  df-fzo 11821  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-fac 12356  df-bc 12383  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-rlim 13323  df-o1 13324  df-lo1 13325  df-sum 13520  df-dvds 13998  df-gcd 14156  df-prm 14229  df-pc 14372  df-mu 23499
This theorem is referenced by:  mulogsumlem  23841  mulog2sumlem3  23846  selberglem1  23855
  Copyright terms: Public domain W3C validator