MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtestbdd Structured version   Unicode version

Theorem mtestbdd 21829
Description: Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
mtest.z  |-  Z  =  ( ZZ>= `  N )
mtest.n  |-  ( ph  ->  N  e.  ZZ )
mtest.s  |-  ( ph  ->  S  e.  V )
mtest.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
mtest.m  |-  ( ph  ->  M  e.  W )
mtest.c  |-  ( (
ph  /\  k  e.  Z )  ->  ( M `  k )  e.  RR )
mtest.l  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
mtest.d  |-  ( ph  ->  seq N (  +  ,  M )  e. 
dom 
~~>  )
mtest.t  |-  ( ph  ->  seq N (  oF  +  ,  F
) ( ~~> u `  S ) T )
Assertion
Ref Expression
mtestbdd  |-  ( ph  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( T `
 z ) )  <_  x )
Distinct variable groups:    x, k,
z, F    k, M, x, z    k, N, x, z    ph, k, x, z   
x, T, z    k, Z, x, z    S, k, x, z
Allowed substitution hints:    T( k)    V( x, z, k)    W( x, z, k)

Proof of Theorem mtestbdd
Dummy variables  j  n  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . 3  |-  ( ph  ->  N  e.  ZZ )
2 mtest.d . . 3  |-  ( ph  ->  seq N (  +  ,  M )  e. 
dom 
~~>  )
3 mtest.z . . . . . 6  |-  Z  =  ( ZZ>= `  N )
4 mtest.c . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( M `  k )  e.  RR )
54recnd 9408 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( M `  k )  e.  CC )
63, 1, 5serf 11830 . . . . 5  |-  ( ph  ->  seq N (  +  ,  M ) : Z --> CC )
76ffvelrnda 5840 . . . 4  |-  ( (
ph  /\  m  e.  Z )  ->  (  seq N (  +  ,  M ) `  m
)  e.  CC )
87ralrimiva 2797 . . 3  |-  ( ph  ->  A. m  e.  Z  (  seq N (  +  ,  M ) `  m )  e.  CC )
93climbdd 13145 . . 3  |-  ( ( N  e.  ZZ  /\  seq N (  +  ,  M )  e.  dom  ~~>  /\ 
A. m  e.  Z  (  seq N (  +  ,  M ) `  m )  e.  CC )  ->  E. y  e.  RR  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
)
101, 2, 8, 9syl3anc 1213 . 2  |-  ( ph  ->  E. y  e.  RR  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
)
111adantr 462 . . 3  |-  ( (
ph  /\  ( y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `
 m ) )  <_  y ) )  ->  N  e.  ZZ )
12 seqfn 11814 . . . . . . 7  |-  ( N  e.  ZZ  ->  seq N (  oF  +  ,  F )  Fn  ( ZZ>= `  N
) )
131, 12syl 16 . . . . . 6  |-  ( ph  ->  seq N (  oF  +  ,  F
)  Fn  ( ZZ>= `  N ) )
143fneq2i 5503 . . . . . 6  |-  (  seq N (  oF  +  ,  F )  Fn  Z  <->  seq N (  oF  +  ,  F )  Fn  ( ZZ>=
`  N ) )
1513, 14sylibr 212 . . . . 5  |-  ( ph  ->  seq N (  oF  +  ,  F
)  Fn  Z )
16 mtest.t . . . . 5  |-  ( ph  ->  seq N (  oF  +  ,  F
) ( ~~> u `  S ) T )
17 ulmf2 21808 . . . . 5  |-  ( (  seq N (  oF  +  ,  F
)  Fn  Z  /\  seq N (  oF  +  ,  F ) ( ~~> u `  S
) T )  ->  seq N (  oF  +  ,  F ) : Z --> ( CC 
^m  S ) )
1815, 16, 17syl2anc 656 . . . 4  |-  ( ph  ->  seq N (  oF  +  ,  F
) : Z --> ( CC 
^m  S ) )
1918adantr 462 . . 3  |-  ( (
ph  /\  ( y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `
 m ) )  <_  y ) )  ->  seq N (  oF  +  ,  F
) : Z --> ( CC 
^m  S ) )
20 simplrl 754 . . . 4  |-  ( ( ( ph  /\  (
y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  ->  y  e.  RR )
21 fveq2 5688 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  j
) `  x )  =  ( ( F `
 j ) `  z ) )
2221mpteq2dv 4376 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
j  e.  Z  |->  ( ( F `  j
) `  x )
)  =  ( j  e.  Z  |->  ( ( F `  j ) `
 z ) ) )
2322seqeq3d 11810 . . . . . . . . . . 11  |-  ( x  =  z  ->  seq N (  +  , 
( j  e.  Z  |->  ( ( F `  j ) `  x
) ) )  =  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `
 j ) `  z ) ) ) )
2423fveq1d 5690 . . . . . . . . . 10  |-  ( x  =  z  ->  (  seq N (  +  , 
( j  e.  Z  |->  ( ( F `  j ) `  x
) ) ) `  n )  =  (  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `
 j ) `  z ) ) ) `
 n ) )
25 eqid 2441 . . . . . . . . . 10  |-  ( x  e.  S  |->  (  seq N (  +  , 
( j  e.  Z  |->  ( ( F `  j ) `  x
) ) ) `  n ) )  =  ( x  e.  S  |->  (  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `  j ) `
 x ) ) ) `  n ) )
26 fvex 5698 . . . . . . . . . 10  |-  (  seq N (  +  , 
( j  e.  Z  |->  ( ( F `  j ) `  z
) ) ) `  n )  e.  _V
2724, 25, 26fvmpt 5771 . . . . . . . . 9  |-  ( z  e.  S  ->  (
( x  e.  S  |->  (  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `  j ) `
 x ) ) ) `  n ) ) `  z )  =  (  seq N
(  +  ,  ( j  e.  Z  |->  ( ( F `  j
) `  z )
) ) `  n
) )
2827adantl 463 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (
( x  e.  S  |->  (  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `  j ) `
 x ) ) ) `  n ) ) `  z )  =  (  seq N
(  +  ,  ( j  e.  Z  |->  ( ( F `  j
) `  z )
) ) `  n
) )
29 mtest.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
3029ad3antrrr 724 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  F : Z --> ( CC  ^m  S ) )
3130feqmptd 5741 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  F  =  ( j  e.  Z  |->  ( F `  j ) ) )
3230ffvelrnda 5840 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  j  e.  Z )  ->  ( F `  j )  e.  ( CC  ^m  S
) )
33 elmapi 7230 . . . . . . . . . . . . . . . 16  |-  ( ( F `  j )  e.  ( CC  ^m  S )  ->  ( F `  j ) : S --> CC )
3432, 33syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  j  e.  Z )  ->  ( F `  j ) : S --> CC )
3534feqmptd 5741 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  j  e.  Z )  ->  ( F `  j )  =  ( x  e.  S  |->  ( ( F `
 j ) `  x ) ) )
3635mpteq2dva 4375 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (
j  e.  Z  |->  ( F `  j ) )  =  ( j  e.  Z  |->  ( x  e.  S  |->  ( ( F `  j ) `
 x ) ) ) )
3731, 36eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  F  =  ( j  e.  Z  |->  ( x  e.  S  |->  ( ( F `
 j ) `  x ) ) ) )
3837seqeq3d 11810 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  seq N (  oF  +  ,  F )  =  seq N (  oF  +  , 
( j  e.  Z  |->  ( x  e.  S  |->  ( ( F `  j ) `  x
) ) ) ) )
3938fveq1d 5690 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (  seq N (  oF  +  ,  F ) `
 n )  =  (  seq N (  oF  +  , 
( j  e.  Z  |->  ( x  e.  S  |->  ( ( F `  j ) `  x
) ) ) ) `
 n ) )
40 mtest.s . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  V )
4140ad3antrrr 724 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  S  e.  V )
42 simplr 749 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  n  e.  Z )
4342, 3syl6eleq 2531 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  n  e.  ( ZZ>= `  N )
)
44 elfzuz 11445 . . . . . . . . . . . . . 14  |-  ( k  e.  ( N ... n )  ->  k  e.  ( ZZ>= `  N )
)
4544, 3syl6eleqr 2532 . . . . . . . . . . . . 13  |-  ( k  e.  ( N ... n )  ->  k  e.  Z )
4645ssriv 3357 . . . . . . . . . . . 12  |-  ( N ... n )  C_  Z
4746a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( N ... n )  C_  Z )
4834ffvelrnda 5840 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `
 m ) )  <_  y ) )  /\  n  e.  Z
)  /\  z  e.  S )  /\  j  e.  Z )  /\  x  e.  S )  ->  (
( F `  j
) `  x )  e.  CC )
4948anasss 642 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  (
j  e.  Z  /\  x  e.  S )
)  ->  ( ( F `  j ) `  x )  e.  CC )
5041, 43, 47, 49seqof2 11860 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (  seq N (  oF  +  ,  ( j  e.  Z  |->  ( x  e.  S  |->  ( ( F `  j ) `
 x ) ) ) ) `  n
)  =  ( x  e.  S  |->  (  seq N (  +  , 
( j  e.  Z  |->  ( ( F `  j ) `  x
) ) ) `  n ) ) )
5139, 50eqtrd 2473 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (  seq N (  oF  +  ,  F ) `
 n )  =  ( x  e.  S  |->  (  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `  j ) `
 x ) ) ) `  n ) ) )
5251fveq1d 5690 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  n ) `  z )  =  ( ( x  e.  S  |->  (  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `  j ) `
 x ) ) ) `  n ) ) `  z ) )
5345adantl 463 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  k  e.  Z )
54 fveq2 5688 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
5554fveq1d 5690 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( F `  j
) `  z )  =  ( ( F `
 k ) `  z ) )
56 eqid 2441 . . . . . . . . . . 11  |-  ( j  e.  Z  |->  ( ( F `  j ) `
 z ) )  =  ( j  e.  Z  |->  ( ( F `
 j ) `  z ) )
57 fvex 5698 . . . . . . . . . . 11  |-  ( ( F `  k ) `
 z )  e. 
_V
5855, 56, 57fvmpt 5771 . . . . . . . . . 10  |-  ( k  e.  Z  ->  (
( j  e.  Z  |->  ( ( F `  j ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
5953, 58syl 16 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  (
( j  e.  Z  |->  ( ( F `  j ) `  z
) ) `  k
)  =  ( ( F `  k ) `
 z ) )
60 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  j  e.  Z )  ->  z  e.  S )
6134, 60ffvelrnd 5841 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  j  e.  Z )  ->  (
( F `  j
) `  z )  e.  CC )
6261, 56fmptd 5864 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (
j  e.  Z  |->  ( ( F `  j
) `  z )
) : Z --> CC )
6362ffvelrnda 5840 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  Z )  ->  (
( j  e.  Z  |->  ( ( F `  j ) `  z
) ) `  k
)  e.  CC )
6445, 63sylan2 471 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  (
( j  e.  Z  |->  ( ( F `  j ) `  z
) ) `  k
)  e.  CC )
6559, 64eqeltrrd 2516 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  (
( F `  k
) `  z )  e.  CC )
6659, 43, 65fsumser 13203 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( ( F `
 k ) `  z )  =  (  seq N (  +  ,  ( j  e.  Z  |->  ( ( F `
 j ) `  z ) ) ) `
 n ) )
6728, 52, 663eqtr4d 2483 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  (
(  seq N (  oF  +  ,  F
) `  n ) `  z )  =  sum_ k  e.  ( N ... n ) ( ( F `  k ) `
 z ) )
6867fveq2d 5692 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  oF  +  ,  F ) `
 n ) `  z ) )  =  ( abs `  sum_ k  e.  ( N ... n ) ( ( F `  k ) `
 z ) ) )
69 fzfid 11791 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( N ... n )  e. 
Fin )
7069, 65fsumcl 13206 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( ( F `
 k ) `  z )  e.  CC )
7170abscld 12918 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( N ... n ) ( ( F `  k ) `  z
) )  e.  RR )
7265abscld 12918 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  ( abs `  ( ( F `
 k ) `  z ) )  e.  RR )
7369, 72fsumrecl 13207 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( abs `  (
( F `  k
) `  z )
)  e.  RR )
7420adantr 462 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  y  e.  RR )
7569, 65fsumabs 13260 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( N ... n ) ( ( F `  k ) `  z
) )  <_  sum_ k  e.  ( N ... n
) ( abs `  (
( F `  k
) `  z )
) )
76 simp-4l 760 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  ph )
7776, 53, 4syl2anc 656 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  ( M `  k )  e.  RR )
7869, 77fsumrecl 13207 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( M `  k )  e.  RR )
79 simplr 749 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  z  e.  S )
80 mtest.l . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  ( M `  k ) )
8176, 53, 79, 80syl12anc 1211 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  ( abs `  ( ( F `
 k ) `  z ) )  <_ 
( M `  k
) )
8269, 72, 77, 81fsumle 13258 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( abs `  (
( F `  k
) `  z )
)  <_  sum_ k  e.  ( N ... n
) ( M `  k ) )
8378recnd 9408 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( M `  k )  e.  CC )
8483abscld 12918 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( N ... n ) ( M `  k
) )  e.  RR )
8578leabsd 12897 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( M `  k )  <_  ( abs `  sum_ k  e.  ( N ... n ) ( M `  k
) ) )
86 eqidd 2442 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  ( M `  k )  =  ( M `  k ) )
8776, 53, 5syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  /\  k  e.  ( N ... n
) )  ->  ( M `  k )  e.  CC )
8886, 43, 87fsumser 13203 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( M `  k )  =  (  seq N (  +  ,  M ) `  n ) )
8988fveq2d 5692 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( N ... n ) ( M `  k
) )  =  ( abs `  (  seq N (  +  ,  M ) `  n
) ) )
90 simprr 751 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `
 m ) )  <_  y ) )  ->  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
)
91 fveq2 5688 . . . . . . . . . . . . . . 15  |-  ( m  =  n  ->  (  seq N (  +  ,  M ) `  m
)  =  (  seq N (  +  ,  M ) `  n
) )
9291fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  ( abs `  (  seq N
(  +  ,  M
) `  m )
)  =  ( abs `  (  seq N (  +  ,  M ) `
 n ) ) )
9392breq1d 4299 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y  <->  ( abs `  (  seq N (  +  ,  M ) `  n
) )  <_  y
) )
9493rspccva 3069 . . . . . . . . . . . 12  |-  ( ( A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y  /\  n  e.  Z
)  ->  ( abs `  (  seq N (  +  ,  M ) `
 n ) )  <_  y )
9590, 94sylan 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  ->  ( abs `  (  seq N
(  +  ,  M
) `  n )
)  <_  y )
9695adantr 462 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  (  seq N
(  +  ,  M
) `  n )
)  <_  y )
9789, 96eqbrtrd 4309 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( N ... n ) ( M `  k
) )  <_  y
)
9878, 84, 74, 85, 97letrd 9524 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( M `  k )  <_  y
)
9973, 78, 74, 82, 98letrd 9524 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  sum_ k  e.  ( N ... n
) ( abs `  (
( F `  k
) `  z )
)  <_  y )
10071, 73, 74, 75, 99letrd 9524 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  sum_ k  e.  ( N ... n ) ( ( F `  k ) `  z
) )  <_  y
)
10168, 100eqbrtrd 4309 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  RR  /\ 
A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  /\  z  e.  S )  ->  ( abs `  ( (  seq N (  oF  +  ,  F ) `
 n ) `  z ) )  <_ 
y )
102101ralrimiva 2797 . . . 4  |-  ( ( ( ph  /\  (
y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  ->  A. z  e.  S  ( abs `  ( (  seq N
(  oF  +  ,  F ) `  n
) `  z )
)  <_  y )
103 breq2 4293 . . . . . 6  |-  ( x  =  y  ->  (
( abs `  (
(  seq N (  oF  +  ,  F
) `  n ) `  z ) )  <_  x 
<->  ( abs `  (
(  seq N (  oF  +  ,  F
) `  n ) `  z ) )  <_ 
y ) )
104103ralbidv 2733 . . . . 5  |-  ( x  =  y  ->  ( A. z  e.  S  ( abs `  ( (  seq N (  oF  +  ,  F
) `  n ) `  z ) )  <_  x 
<-> 
A. z  e.  S  ( abs `  ( (  seq N (  oF  +  ,  F
) `  n ) `  z ) )  <_ 
y ) )
105104rspcev 3070 . . . 4  |-  ( ( y  e.  RR  /\  A. z  e.  S  ( abs `  ( (  seq N (  oF  +  ,  F
) `  n ) `  z ) )  <_ 
y )  ->  E. x  e.  RR  A. z  e.  S  ( abs `  (
(  seq N (  oF  +  ,  F
) `  n ) `  z ) )  <_  x )
10620, 102, 105syl2anc 656 . . 3  |-  ( ( ( ph  /\  (
y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `  m
) )  <_  y
) )  /\  n  e.  Z )  ->  E. x  e.  RR  A. z  e.  S  ( abs `  (
(  seq N (  oF  +  ,  F
) `  n ) `  z ) )  <_  x )
10716adantr 462 . . 3  |-  ( (
ph  /\  ( y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `
 m ) )  <_  y ) )  ->  seq N (  oF  +  ,  F
) ( ~~> u `  S ) T )
1083, 11, 19, 106, 107ulmbdd 21822 . 2  |-  ( (
ph  /\  ( y  e.  RR  /\  A. m  e.  Z  ( abs `  (  seq N (  +  ,  M ) `
 m ) )  <_  y ) )  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( T `
 z ) )  <_  x )
10910, 108rexlimddv 2843 1  |-  ( ph  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( T `
 z ) )  <_  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714    C_ wss 3325   class class class wbr 4289    e. cmpt 4347   dom cdm 4836    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    oFcof 6317    ^m cmap 7210   CCcc 9276   RRcr 9277    + caddc 9281    <_ cle 9415   ZZcz 10642   ZZ>=cuz 10857   ...cfz 11433    seqcseq 11802   abscabs 12719    ~~> cli 12958   sum_csu 13159   ~~> uculm 21800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-ico 11302  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-ulm 21801
This theorem is referenced by:  lgamgulmlem6  26950
  Copyright terms: Public domain W3C validator