MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt4d Structured version   Unicode version

Theorem mt4d 138
Description: Modus tollens deduction. (Contributed by NM, 9-Jun-2006.)
Hypotheses
Ref Expression
mt4d.1  |-  ( ph  ->  ps )
mt4d.2  |-  ( ph  ->  ( -.  ch  ->  -. 
ps ) )
Assertion
Ref Expression
mt4d  |-  ( ph  ->  ch )

Proof of Theorem mt4d
StepHypRef Expression
1 mt4d.1 . 2  |-  ( ph  ->  ps )
2 mt4d.2 . . 3  |-  ( ph  ->  ( -.  ch  ->  -. 
ps ) )
32con4d 105 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
41, 3mpd 15 1  |-  ( ph  ->  ch )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mt4i  139  fin1a2s  8790  gchinf  9031  pwfseqlem4  9036  isprm2lem  14079  pcfac  14273  prmreclem3  14291  sylow1lem1  16414  irredrmul  17140  mdetunilem9  18889  ioorcl2  21716  itg2gt0  21902  mdegmullem  22213  atom1d  26948  notnot2ALT  32378
  Copyright terms: Public domain W3C validator