MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Structured version   Unicode version

Theorem mrieqvd 15144
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mrieqvd.2  |-  N  =  (mrCls `  A )
mrieqvd.3  |-  I  =  (mrInd `  A )
mrieqvd.4  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
mrieqvd  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  ( N `  ( S 
\  { x }
) )  =/=  ( N `  S )
) )
Distinct variable groups:    x, A    x, S    ph, x
Allowed substitution hints:    I( x)    N( x)    X( x)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3  |-  N  =  (mrCls `  A )
2 mrieqvd.3 . . 3  |-  I  =  (mrInd `  A )
3 mrieqvd.1 . . 3  |-  ( ph  ->  A  e.  (Moore `  X ) )
4 mrieqvd.4 . . 3  |-  ( ph  ->  S  C_  X )
51, 2, 3, 4ismri2d 15139 . 2  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
63adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  (Moore `  X )
)
74adantr 463 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  S  C_  X )
8 simpr 459 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
96, 1, 7, 8mrieqvlemd 15135 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( N `
 ( S  \  { x } ) )  <->  ( N `  ( S  \  { x } ) )  =  ( N `  S
) ) )
109necon3bbid 2650 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  ( -.  x  e.  ( N `  ( S  \  { x } ) )  <->  ( N `  ( S  \  { x } ) )  =/=  ( N `  S
) ) )
1110ralbidva 2839 . 2  |-  ( ph  ->  ( A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) )  <->  A. x  e.  S  ( N `  ( S  \  {
x } ) )  =/=  ( N `  S ) ) )
125, 11bitrd 253 1  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  ( N `  ( S 
\  { x }
) )  =/=  ( N `  S )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753    \ cdif 3410    C_ wss 3413   {csn 3971   ` cfv 5525  Moorecmre 15088  mrClscmrc 15089  mrIndcmri 15090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-int 4227  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-mre 15092  df-mrc 15093  df-mri 15094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator