MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Unicode version

Theorem mrieqvd 13792
Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mrieqvd.2  |-  N  =  (mrCls `  A )
mrieqvd.3  |-  I  =  (mrInd `  A )
mrieqvd.4  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
mrieqvd  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  ( N `  ( S 
\  { x }
) )  =/=  ( N `  S )
) )
Distinct variable groups:    x, A    x, S    ph, x
Allowed substitution hints:    I( x)    N( x)    X( x)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3  |-  N  =  (mrCls `  A )
2 mrieqvd.3 . . 3  |-  I  =  (mrInd `  A )
3 mrieqvd.1 . . 3  |-  ( ph  ->  A  e.  (Moore `  X ) )
4 mrieqvd.4 . . 3  |-  ( ph  ->  S  C_  X )
51, 2, 3, 4ismri2d 13787 . 2  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  {
x } ) ) ) )
63adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  (Moore `  X )
)
74adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  S  C_  X )
8 simpr 448 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  S )
96, 1, 7, 8mrieqvlemd 13783 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( N `
 ( S  \  { x } ) )  <->  ( N `  ( S  \  { x } ) )  =  ( N `  S
) ) )
109necon3bbid 2586 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  ( -.  x  e.  ( N `  ( S  \  { x } ) )  <->  ( N `  ( S  \  { x } ) )  =/=  ( N `  S
) ) )
1110ralbidva 2667 . 2  |-  ( ph  ->  ( A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) )  <->  A. x  e.  S  ( N `  ( S  \  {
x } ) )  =/=  ( N `  S ) ) )
125, 11bitrd 245 1  |-  ( ph  ->  ( S  e.  I  <->  A. x  e.  S  ( N `  ( S 
\  { x }
) )  =/=  ( N `  S )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651    \ cdif 3262    C_ wss 3265   {csn 3759   ` cfv 5396  Moorecmre 13736  mrClscmrc 13737  mrIndcmri 13738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-fv 5404  df-mre 13740  df-mrc 13741  df-mri 13742
  Copyright terms: Public domain W3C validator