Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreunirn Structured version   Unicode version

Theorem mreunirn 15459
 Description: Two ways to express the notion of being a Moore collection on an unspecified base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreunirn Moore Moore

Proof of Theorem mreunirn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fnmre 15449 . . . 4 Moore
2 fnunirn 6164 . . . 4 Moore Moore Moore
31, 2ax-mp 5 . . 3 Moore Moore
4 mreuni 15458 . . . . . . 7 Moore
54fveq2d 5876 . . . . . 6 Moore Moore Moore
65eleq2d 2490 . . . . 5 Moore Moore Moore
76ibir 245 . . . 4 Moore Moore
87rexlimivw 2912 . . 3 Moore Moore
93, 8sylbi 198 . 2 Moore Moore
10 fvssunirn 5895 . . 3 Moore Moore
1110sseli 3457 . 2 Moore Moore
129, 11impbii 190 1 Moore Moore
 Colors of variables: wff setvar class Syntax hints:   wb 187   wcel 1867  wrex 2774  cvv 3078  cuni 4213   crn 4846   wfn 5587  cfv 5592  Moorecmre 15440 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5556  df-fun 5594  df-fn 5595  df-fv 5600  df-mre 15444 This theorem is referenced by:  fnmrc  15465  mrcfval  15466
 Copyright terms: Public domain W3C validator