MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mresspw Structured version   Visualization version   Unicode version

Theorem mresspw 15498
Description: A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mresspw  |-  ( C  e.  (Moore `  X
)  ->  C  C_  ~P X )

Proof of Theorem mresspw
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ismre 15496 . 2  |-  ( C  e.  (Moore `  X
)  <->  ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) )
21simp1bi 1023 1  |-  ( C  e.  (Moore `  X
)  ->  C  C_  ~P X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1887    =/= wne 2622   A.wral 2737    C_ wss 3404   (/)c0 3731   ~Pcpw 3951   |^|cint 4234   ` cfv 5582  Moorecmre 15488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-iota 5546  df-fun 5584  df-fv 5590  df-mre 15492
This theorem is referenced by:  mress  15499  mrerintcl  15503  mreuni  15506  mremre  15510  isacs2  15559  mreacs  15564  isacs3lem  16412  dmdprdd  17631  dprdfeq0  17655  dprdss  17662  dprdz  17663  subgdmdprd  17667  subgdprd  17668  dprd2dlem1  17674  dprd2da  17675  dmdprdsplit2lem  17678  mretopd  20108  ismrc  35543
  Copyright terms: Public domain W3C validator