MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mremre Structured version   Unicode version

Theorem mremre 14646
Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mremre  |-  ( X  e.  V  ->  (Moore `  X )  e.  (Moore `  ~P X ) )

Proof of Theorem mremre
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mresspw 14634 . . . . 5  |-  ( a  e.  (Moore `  X
)  ->  a  C_  ~P X )
2 selpw 3967 . . . . 5  |-  ( a  e.  ~P ~P X  <->  a 
C_  ~P X )
31, 2sylibr 212 . . . 4  |-  ( a  e.  (Moore `  X
)  ->  a  e.  ~P ~P X )
43ssriv 3460 . . 3  |-  (Moore `  X )  C_  ~P ~P X
54a1i 11 . 2  |-  ( X  e.  V  ->  (Moore `  X )  C_  ~P ~P X )
6 ssid 3475 . . . 4  |-  ~P X  C_ 
~P X
76a1i 11 . . 3  |-  ( X  e.  V  ->  ~P X  C_  ~P X )
8 pwidg 3973 . . 3  |-  ( X  e.  V  ->  X  e.  ~P X )
9 intssuni2 4253 . . . . . 6  |-  ( ( a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  C_  U. ~P X )
1093adant1 1006 . . . . 5  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  C_ 
U. ~P X )
11 unipw 4642 . . . . 5  |-  U. ~P X  =  X
1210, 11syl6sseq 3502 . . . 4  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  C_  X )
13 elpw2g 4555 . . . . 5  |-  ( X  e.  V  ->  ( |^| a  e.  ~P X 
<-> 
|^| a  C_  X
) )
14133ad2ant1 1009 . . . 4  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  ( |^| a  e.  ~P X 
<-> 
|^| a  C_  X
) )
1512, 14mpbird 232 . . 3  |-  ( ( X  e.  V  /\  a  C_  ~P X  /\  a  =/=  (/) )  ->  |^| a  e.  ~P X )
167, 8, 15ismred 14644 . 2  |-  ( X  e.  V  ->  ~P X  e.  (Moore `  X
) )
17 n0 3746 . . . . 5  |-  ( a  =/=  (/)  <->  E. b  b  e.  a )
18 intss1 4243 . . . . . . . . 9  |-  ( b  e.  a  ->  |^| a  C_  b )
1918adantl 466 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  |^| a  C_  b
)
20 simpr 461 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  a  C_  (Moore `  X )
)
2120sselda 3456 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  b  e.  (Moore `  X ) )
22 mresspw 14634 . . . . . . . . 9  |-  ( b  e.  (Moore `  X
)  ->  b  C_  ~P X )
2321, 22syl 16 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  b  C_  ~P X
)
2419, 23sstrd 3466 . . . . . . 7  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X ) )  /\  b  e.  a )  ->  |^| a  C_  ~P X )
2524ex 434 . . . . . 6  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  (
b  e.  a  ->  |^| a  C_  ~P X
) )
2625exlimdv 1691 . . . . 5  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  ( E. b  b  e.  a  ->  |^| a  C_  ~P X ) )
2717, 26syl5bi 217 . . . 4  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
) )  ->  (
a  =/=  (/)  ->  |^| a  C_ 
~P X ) )
28273impia 1185 . . 3  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  |^| a  C_  ~P X )
29 simp2 989 . . . . . . 7  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  a  C_  (Moore `  X ) )
3029sselda 3456 . . . . . 6  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  e.  a )  ->  b  e.  (Moore `  X )
)
31 mre1cl 14636 . . . . . 6  |-  ( b  e.  (Moore `  X
)  ->  X  e.  b )
3230, 31syl 16 . . . . 5  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  e.  a )  ->  X  e.  b )
3332ralrimiva 2822 . . . 4  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  A. b  e.  a  X  e.  b )
34 elintg 4236 . . . . 5  |-  ( X  e.  V  ->  ( X  e.  |^| a  <->  A. b  e.  a  X  e.  b ) )
35343ad2ant1 1009 . . . 4  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  ( X  e.  |^| a  <->  A. b  e.  a  X  e.  b ) )
3633, 35mpbird 232 . . 3  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  X  e.  |^| a )
37 simp12 1019 . . . . . . 7  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  a  C_  (Moore `  X )
)
3837sselda 3456 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  c  e.  (Moore `  X )
)
39 simpl2 992 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  b  C_ 
|^| a )
40 intss1 4243 . . . . . . . 8  |-  ( c  e.  a  ->  |^| a  C_  c )
4140adantl 466 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  |^| a  C_  c )
4239, 41sstrd 3466 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  b  C_  c )
43 simpl3 993 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  b  =/=  (/) )
44 mreintcl 14637 . . . . . 6  |-  ( ( c  e.  (Moore `  X )  /\  b  C_  c  /\  b  =/=  (/) )  ->  |^| b  e.  c )
4538, 42, 43, 44syl3anc 1219 . . . . 5  |-  ( ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  /\  c  e.  a )  ->  |^| b  e.  c )
4645ralrimiva 2822 . . . 4  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  A. c  e.  a  |^| b  e.  c )
47 intex 4548 . . . . . 6  |-  ( b  =/=  (/)  <->  |^| b  e.  _V )
48 elintg 4236 . . . . . 6  |-  ( |^| b  e.  _V  ->  (
|^| b  e.  |^| a 
<-> 
A. c  e.  a 
|^| b  e.  c ) )
4947, 48sylbi 195 . . . . 5  |-  ( b  =/=  (/)  ->  ( |^| b  e.  |^| a  <->  A. c  e.  a  |^| b  e.  c ) )
50493ad2ant3 1011 . . . 4  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  ( |^| b  e.  |^| a  <->  A. c  e.  a  |^| b  e.  c )
)
5146, 50mpbird 232 . . 3  |-  ( ( ( X  e.  V  /\  a  C_  (Moore `  X )  /\  a  =/=  (/) )  /\  b  C_ 
|^| a  /\  b  =/=  (/) )  ->  |^| b  e.  |^| a )
5228, 36, 51ismred 14644 . 2  |-  ( ( X  e.  V  /\  a  C_  (Moore `  X
)  /\  a  =/=  (/) )  ->  |^| a  e.  (Moore `  X )
)
535, 16, 52ismred 14644 1  |-  ( X  e.  V  ->  (Moore `  X )  e.  (Moore `  ~P X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   E.wex 1587    e. wcel 1758    =/= wne 2644   A.wral 2795   _Vcvv 3070    C_ wss 3428   (/)c0 3737   ~Pcpw 3960   U.cuni 4191   |^|cint 4228   ` cfv 5518  Moorecmre 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-int 4229  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-iota 5481  df-fun 5520  df-fv 5526  df-mre 14628
This theorem is referenced by:  mreacs  14700  mreclatdemoBAD  18818
  Copyright terms: Public domain W3C validator