MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrelatglb Structured version   Unicode version

Theorem mrelatglb 15688
Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
mreclat.i  |-  I  =  (toInc `  C )
mrelatglb.g  |-  G  =  ( glb `  I
)
Assertion
Ref Expression
mrelatglb  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  ->  ( G `
 U )  = 
|^| U )

Proof of Theorem mrelatglb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . 2  |-  ( le
`  I )  =  ( le `  I
)
2 mreclat.i . . . 4  |-  I  =  (toInc `  C )
32ipobas 15659 . . 3  |-  ( C  e.  (Moore `  X
)  ->  C  =  ( Base `  I )
)
433ad2ant1 1017 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  ->  C  =  ( Base `  I
) )
5 mrelatglb.g . . 3  |-  G  =  ( glb `  I
)
65a1i 11 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  ->  G  =  ( glb `  I
) )
72ipopos 15664 . . 3  |-  I  e. 
Poset
87a1i 11 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  ->  I  e. 
Poset )
9 simp2 997 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  ->  U  C_  C )
10 mreintcl 14867 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  ->  |^| U  e.  C )
11 intss1 4303 . . . 4  |-  ( x  e.  U  ->  |^| U  C_  x )
1211adantl 466 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  x  e.  U )  ->  |^| U  C_  x )
13 simpl1 999 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  x  e.  U )  ->  C  e.  (Moore `  X )
)
1410adantr 465 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  x  e.  U )  ->  |^| U  e.  C )
159sselda 3509 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  x  e.  U )  ->  x  e.  C )
162, 1ipole 15662 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  |^| U  e.  C  /\  x  e.  C )  ->  ( |^| U ( le `  I ) x  <->  |^| U  C_  x
) )
1713, 14, 15, 16syl3anc 1228 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  x  e.  U )  ->  ( |^| U ( le `  I ) x  <->  |^| U  C_  x ) )
1812, 17mpbird 232 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  x  e.  U )  ->  |^| U
( le `  I
) x )
19 simpll1 1035 . . . . . . . 8  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C )  /\  x  e.  U )  ->  C  e.  (Moore `  X )
)
20 simplr 754 . . . . . . . 8  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C )  /\  x  e.  U )  ->  y  e.  C )
21 simpl2 1000 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C )  ->  U  C_  C )
2221sselda 3509 . . . . . . . 8  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C )  /\  x  e.  U )  ->  x  e.  C )
232, 1ipole 15662 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  y  e.  C  /\  x  e.  C )  ->  (
y ( le `  I ) x  <->  y  C_  x ) )
2419, 20, 22, 23syl3anc 1228 . . . . . . 7  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C )  /\  x  e.  U )  ->  (
y ( le `  I ) x  <->  y  C_  x ) )
2524biimpd 207 . . . . . 6  |-  ( ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C )  /\  x  e.  U )  ->  (
y ( le `  I ) x  -> 
y  C_  x )
)
2625ralimdva 2875 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C )  ->  ( A. x  e.  U  y ( le `  I ) x  ->  A. x  e.  U  y  C_  x ) )
27263impia 1193 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C  /\  A. x  e.  U  y ( le `  I ) x )  ->  A. x  e.  U  y  C_  x )
28 ssint 4304 . . . 4  |-  ( y 
C_  |^| U  <->  A. x  e.  U  y  C_  x )
2927, 28sylibr 212 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C  /\  A. x  e.  U  y ( le `  I ) x )  ->  y  C_  |^| U )
30 simp11 1026 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C  /\  A. x  e.  U  y ( le `  I ) x )  ->  C  e.  (Moore `  X ) )
31 simp2 997 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C  /\  A. x  e.  U  y ( le `  I ) x )  ->  y  e.  C )
32103ad2ant1 1017 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C  /\  A. x  e.  U  y ( le `  I ) x )  ->  |^| U  e.  C )
332, 1ipole 15662 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  y  e.  C  /\  |^| U  e.  C )  ->  (
y ( le `  I ) |^| U  <->  y 
C_  |^| U ) )
3430, 31, 32, 33syl3anc 1228 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C  /\  A. x  e.  U  y ( le `  I ) x )  ->  ( y
( le `  I
) |^| U  <->  y  C_  |^| U ) )
3529, 34mpbird 232 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  /\  y  e.  C  /\  A. x  e.  U  y ( le `  I ) x )  ->  y ( le `  I ) |^| U )
361, 4, 6, 8, 9, 10, 18, 35posglbd 15654 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  C  /\  U  =/=  (/) )  ->  ( G `
 U )  = 
|^| U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817    C_ wss 3481   (/)c0 3790   |^|cint 4288   class class class wbr 4453   ` cfv 5594   Basecbs 14507   lecple 14579  Moorecmre 14854   Posetcpo 15444   glbcglb 15447  toInccipo 15655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-fz 11685  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-tset 14591  df-ple 14592  df-ocomp 14593  df-mre 14858  df-poset 15450  df-lub 15478  df-glb 15479  df-odu 15633  df-ipo 15656
This theorem is referenced by:  mreclatBAD  15691
  Copyright terms: Public domain W3C validator