MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreintcl Structured version   Unicode version

Theorem mreintcl 14533
Description: A nonempty collection of closed sets has a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mreintcl  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  |^| S  e.  C )

Proof of Theorem mreintcl
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 elpw2g 4455 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  ( S  e.  ~P C  <->  S  C_  C
) )
21biimpar 485 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C )  ->  S  e.  ~P C )
323adant3 1008 . 2  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  S  e. 
~P C )
4 ismre 14528 . . . 4  |-  ( C  e.  (Moore `  X
)  <->  ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) )
54simp3bi 1005 . . 3  |-  ( C  e.  (Moore `  X
)  ->  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) )
653ad2ant1 1009 . 2  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) )
7 simp3 990 . 2  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  S  =/=  (/) )
8 neeq1 2616 . . . . 5  |-  ( s  =  S  ->  (
s  =/=  (/)  <->  S  =/=  (/) ) )
9 inteq 4131 . . . . . 6  |-  ( s  =  S  ->  |^| s  =  |^| S )
109eleq1d 2509 . . . . 5  |-  ( s  =  S  ->  ( |^| s  e.  C  <->  |^| S  e.  C ) )
118, 10imbi12d 320 . . . 4  |-  ( s  =  S  ->  (
( s  =/=  (/)  ->  |^| s  e.  C )  <->  ( S  =/=  (/)  ->  |^| S  e.  C ) ) )
1211rspcva 3071 . . 3  |-  ( ( S  e.  ~P C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C
) )  ->  ( S  =/=  (/)  ->  |^| S  e.  C ) )
13123impia 1184 . 2  |-  ( ( S  e.  ~P C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C
)  /\  S  =/=  (/) )  ->  |^| S  e.  C )
143, 6, 7, 13syl3anc 1218 1  |-  ( ( C  e.  (Moore `  X )  /\  S  C_  C  /\  S  =/=  (/) )  ->  |^| S  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715    C_ wss 3328   (/)c0 3637   ~Pcpw 3860   |^|cint 4128   ` cfv 5418  Moorecmre 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-int 4129  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-iota 5381  df-fun 5420  df-fv 5426  df-mre 14524
This theorem is referenced by:  mreiincl  14534  mrerintcl  14535  mreincl  14537  mremre  14542  submre  14543  mrcflem  14544  mrelatglb  15354  mreclatBAD  15357
  Copyright terms: Public domain W3C validator