MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexlem3d Structured version   Unicode version

Theorem mreexexlem3d 14892
Description: Base case of the induction in mreexexd 14894. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlem2d.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mreexexlem2d.2  |-  N  =  (mrCls `  A )
mreexexlem2d.3  |-  I  =  (mrInd `  A )
mreexexlem2d.4  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
mreexexlem2d.5  |-  ( ph  ->  F  C_  ( X  \  H ) )
mreexexlem2d.6  |-  ( ph  ->  G  C_  ( X  \  H ) )
mreexexlem2d.7  |-  ( ph  ->  F  C_  ( N `  ( G  u.  H
) ) )
mreexexlem2d.8  |-  ( ph  ->  ( F  u.  H
)  e.  I )
mreexexlem3d.9  |-  ( ph  ->  ( F  =  (/)  \/  G  =  (/) ) )
Assertion
Ref Expression
mreexexlem3d  |-  ( ph  ->  E. i  e.  ~P  G ( F  ~~  i  /\  ( i  u.  H )  e.  I
) )
Distinct variable groups:    i, F    i, G    i, H    i, I
Allowed substitution hints:    ph( y, z, i, s)    A( y, z, i, s)    F( y, z, s)    G( y, z, s)    H( y, z, s)    I( y, z, s)    N( y, z, i, s)    X( y, z, i, s)

Proof of Theorem mreexexlem3d
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( (
ph  /\  F  =  (/) )  ->  F  =  (/) )
2 mreexexlem2d.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  (Moore `  X ) )
32adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  G  =  (/) )  ->  A  e.  (Moore `  X ) )
4 mreexexlem2d.2 . . . . . . . . 9  |-  N  =  (mrCls `  A )
5 mreexexlem2d.3 . . . . . . . . 9  |-  I  =  (mrInd `  A )
6 mreexexlem2d.7 . . . . . . . . . . . 12  |-  ( ph  ->  F  C_  ( N `  ( G  u.  H
) ) )
76adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  G  =  (/) )  ->  F  C_  ( N `  ( G  u.  H ) ) )
8 simpr 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  G  =  (/) )  ->  G  =  (/) )
98uneq1d 3652 . . . . . . . . . . . . 13  |-  ( (
ph  /\  G  =  (/) )  ->  ( G  u.  H )  =  (
(/)  u.  H )
)
10 uncom 3643 . . . . . . . . . . . . . 14  |-  ( H  u.  (/) )  =  (
(/)  u.  H )
11 un0 3805 . . . . . . . . . . . . . 14  |-  ( H  u.  (/) )  =  H
1210, 11eqtr3i 2493 . . . . . . . . . . . . 13  |-  ( (/)  u.  H )  =  H
139, 12syl6eq 2519 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  =  (/) )  ->  ( G  u.  H )  =  H )
1413fveq2d 5863 . . . . . . . . . . 11  |-  ( (
ph  /\  G  =  (/) )  ->  ( N `  ( G  u.  H
) )  =  ( N `  H ) )
157, 14sseqtrd 3535 . . . . . . . . . 10  |-  ( (
ph  /\  G  =  (/) )  ->  F  C_  ( N `  H )
)
16 mreexexlem2d.8 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  u.  H
)  e.  I )
1716adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  G  =  (/) )  ->  ( F  u.  H )  e.  I
)
185, 3, 17mrissd 14882 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  =  (/) )  ->  ( F  u.  H )  C_  X
)
1918unssbd 3677 . . . . . . . . . . 11  |-  ( (
ph  /\  G  =  (/) )  ->  H  C_  X
)
203, 4, 19mrcssidd 14871 . . . . . . . . . 10  |-  ( (
ph  /\  G  =  (/) )  ->  H  C_  ( N `  H )
)
2115, 20unssd 3675 . . . . . . . . 9  |-  ( (
ph  /\  G  =  (/) )  ->  ( F  u.  H )  C_  ( N `  H )
)
22 ssun2 3663 . . . . . . . . . 10  |-  H  C_  ( F  u.  H
)
2322a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  G  =  (/) )  ->  H  C_  ( F  u.  H )
)
243, 4, 5, 21, 23, 17mrissmrcd 14886 . . . . . . . 8  |-  ( (
ph  /\  G  =  (/) )  ->  ( F  u.  H )  =  H )
25 ssequn1 3669 . . . . . . . 8  |-  ( F 
C_  H  <->  ( F  u.  H )  =  H )
2624, 25sylibr 212 . . . . . . 7  |-  ( (
ph  /\  G  =  (/) )  ->  F  C_  H
)
27 mreexexlem2d.5 . . . . . . . 8  |-  ( ph  ->  F  C_  ( X  \  H ) )
2827adantr 465 . . . . . . 7  |-  ( (
ph  /\  G  =  (/) )  ->  F  C_  ( X  \  H ) )
2926, 28ssind 3717 . . . . . 6  |-  ( (
ph  /\  G  =  (/) )  ->  F  C_  ( H  i^i  ( X  \  H ) ) )
30 disjdif 3894 . . . . . 6  |-  ( H  i^i  ( X  \  H ) )  =  (/)
3129, 30syl6sseq 3545 . . . . 5  |-  ( (
ph  /\  G  =  (/) )  ->  F  C_  (/) )
32 ss0b 3810 . . . . 5  |-  ( F 
C_  (/)  <->  F  =  (/) )
3331, 32sylib 196 . . . 4  |-  ( (
ph  /\  G  =  (/) )  ->  F  =  (/) )
34 mreexexlem3d.9 . . . 4  |-  ( ph  ->  ( F  =  (/)  \/  G  =  (/) ) )
351, 33, 34mpjaodan 784 . . 3  |-  ( ph  ->  F  =  (/) )
36 0elpw 4611 . . 3  |-  (/)  e.  ~P G
3735, 36syl6eqel 2558 . 2  |-  ( ph  ->  F  e.  ~P G
)
382elfvexd 5887 . . . 4  |-  ( ph  ->  X  e.  _V )
3927difss2d 3629 . . . 4  |-  ( ph  ->  F  C_  X )
4038, 39ssexd 4589 . . 3  |-  ( ph  ->  F  e.  _V )
41 enrefg 7539 . . 3  |-  ( F  e.  _V  ->  F  ~~  F )
4240, 41syl 16 . 2  |-  ( ph  ->  F  ~~  F )
43 breq2 4446 . . . 4  |-  ( i  =  F  ->  ( F  ~~  i  <->  F  ~~  F ) )
44 uneq1 3646 . . . . 5  |-  ( i  =  F  ->  (
i  u.  H )  =  ( F  u.  H ) )
4544eleq1d 2531 . . . 4  |-  ( i  =  F  ->  (
( i  u.  H
)  e.  I  <->  ( F  u.  H )  e.  I
) )
4643, 45anbi12d 710 . . 3  |-  ( i  =  F  ->  (
( F  ~~  i  /\  ( i  u.  H
)  e.  I )  <-> 
( F  ~~  F  /\  ( F  u.  H
)  e.  I ) ) )
4746rspcev 3209 . 2  |-  ( ( F  e.  ~P G  /\  ( F  ~~  F  /\  ( F  u.  H
)  e.  I ) )  ->  E. i  e.  ~P  G ( F 
~~  i  /\  (
i  u.  H )  e.  I ) )
4837, 42, 16, 47syl12anc 1221 1  |-  ( ph  ->  E. i  e.  ~P  G ( F  ~~  i  /\  ( i  u.  H )  e.  I
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2809   E.wrex 2810   _Vcvv 3108    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3780   ~Pcpw 4005   {csn 4022   class class class wbr 4442   ` cfv 5581    ~~ cen 7505  Moorecmre 14828  mrClscmrc 14829  mrIndcmri 14830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-int 4278  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-en 7509  df-mre 14832  df-mrc 14833  df-mri 14834
This theorem is referenced by:  mreexexlem4d  14893  mreexexd  14894
  Copyright terms: Public domain W3C validator