MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexd Structured version   Unicode version

Theorem mreexexd 15553
Description: Exchange-type theorem. In a Moore system whose closure operator has the exchange property, if  F and  G are disjoint from  H,  ( F  u.  H ) is independent,  F is contained in the closure of  ( G  u.  H ), and either  F or  G is finite, then there is a subset  q of  G equinumerous to  F such that  ( q  u.  H ) is independent. This implies the case of Proposition 4.2.1 in [FaureFrolicher] p. 86 where either  ( A  \  B ) or  ( B  \  A ) is finite. The theorem is proven by induction using mreexexlem3d 15551 for the base case and mreexexlem4d 15552 for the induction step. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlem2d.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mreexexlem2d.2  |-  N  =  (mrCls `  A )
mreexexlem2d.3  |-  I  =  (mrInd `  A )
mreexexlem2d.4  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
mreexexlem2d.5  |-  ( ph  ->  F  C_  ( X  \  H ) )
mreexexlem2d.6  |-  ( ph  ->  G  C_  ( X  \  H ) )
mreexexlem2d.7  |-  ( ph  ->  F  C_  ( N `  ( G  u.  H
) ) )
mreexexlem2d.8  |-  ( ph  ->  ( F  u.  H
)  e.  I )
mreexexd.9  |-  ( ph  ->  ( F  e.  Fin  \/  G  e.  Fin )
)
Assertion
Ref Expression
mreexexd  |-  ( ph  ->  E. q  e.  ~P  G ( F  ~~  q  /\  ( q  u.  H )  e.  I
) )
Distinct variable groups:    F, q    G, q    X, s, y, z    ph, s, y, z    I,
s, y, z    N, s, y, z    ph, q    I, q    H, q
Allowed substitution hints:    A( y, z, s, q)    F( y, z, s)    G( y, z, s)    H( y, z, s)    N( q)    X( q)

Proof of Theorem mreexexd
Dummy variables  f 
g  h  l  k  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlem2d.1 . . 3  |-  ( ph  ->  A  e.  (Moore `  X ) )
21elfvexd 5909 . 2  |-  ( ph  ->  X  e.  _V )
3 mreexexlem2d.5 . 2  |-  ( ph  ->  F  C_  ( X  \  H ) )
4 mreexexlem2d.6 . 2  |-  ( ph  ->  G  C_  ( X  \  H ) )
5 mreexexlem2d.7 . 2  |-  ( ph  ->  F  C_  ( N `  ( G  u.  H
) ) )
6 mreexexlem2d.8 . 2  |-  ( ph  ->  ( F  u.  H
)  e.  I )
7 cardon 8386 . . . . 5  |-  ( card `  F )  e.  On
87onordi 5546 . . . 4  |-  Ord  ( card `  F )
9 cardon 8386 . . . . 5  |-  ( card `  G )  e.  On
109onordi 5546 . . . 4  |-  Ord  ( card `  G )
11 ordtri2or3 5539 . . . 4  |-  ( ( Ord  ( card `  F
)  /\  Ord  ( card `  G ) )  -> 
( ( card `  F
)  =  ( (
card `  F )  i^i  ( card `  G
) )  \/  ( card `  G )  =  ( ( card `  F
)  i^i  ( card `  G ) ) ) )
128, 10, 11mp2an 676 . . 3  |-  ( (
card `  F )  =  ( ( card `  F )  i^i  ( card `  G ) )  \/  ( card `  G
)  =  ( (
card `  F )  i^i  ( card `  G
) ) )
133difss2d 3595 . . . . . . . 8  |-  ( ph  ->  F  C_  X )
142, 13ssexd 4571 . . . . . . 7  |-  ( ph  ->  F  e.  _V )
1514cardidd 8981 . . . . . 6  |-  ( ph  ->  ( card `  F
)  ~~  F )
1615ensymd 7630 . . . . 5  |-  ( ph  ->  F  ~~  ( card `  F ) )
17 breq2 4427 . . . . 5  |-  ( (
card `  F )  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( F  ~~  ( card `  F )  <->  F 
~~  ( ( card `  F )  i^i  ( card `  G ) ) ) )
1816, 17syl5ibcom 223 . . . 4  |-  ( ph  ->  ( ( card `  F
)  =  ( (
card `  F )  i^i  ( card `  G
) )  ->  F  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) ) )
194difss2d 3595 . . . . . . . 8  |-  ( ph  ->  G  C_  X )
202, 19ssexd 4571 . . . . . . 7  |-  ( ph  ->  G  e.  _V )
2120cardidd 8981 . . . . . 6  |-  ( ph  ->  ( card `  G
)  ~~  G )
2221ensymd 7630 . . . . 5  |-  ( ph  ->  G  ~~  ( card `  G ) )
23 breq2 4427 . . . . 5  |-  ( (
card `  G )  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( G  ~~  ( card `  G )  <->  G 
~~  ( ( card `  F )  i^i  ( card `  G ) ) ) )
2422, 23syl5ibcom 223 . . . 4  |-  ( ph  ->  ( ( card `  G
)  =  ( (
card `  F )  i^i  ( card `  G
) )  ->  G  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) ) )
2518, 24orim12d 846 . . 3  |-  ( ph  ->  ( ( ( card `  F )  =  ( ( card `  F
)  i^i  ( card `  G ) )  \/  ( card `  G
)  =  ( (
card `  F )  i^i  ( card `  G
) ) )  -> 
( F  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  G  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) ) ) )
2612, 25mpi 20 . 2  |-  ( ph  ->  ( F  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  G  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) ) )
27 mreexexd.9 . . . . 5  |-  ( ph  ->  ( F  e.  Fin  \/  G  e.  Fin )
)
28 ficardom 8403 . . . . . 6  |-  ( F  e.  Fin  ->  ( card `  F )  e. 
om )
29 ficardom 8403 . . . . . 6  |-  ( G  e.  Fin  ->  ( card `  G )  e. 
om )
3028, 29orim12i 518 . . . . 5  |-  ( ( F  e.  Fin  \/  G  e.  Fin )  ->  ( ( card `  F
)  e.  om  \/  ( card `  G )  e.  om ) )
3127, 30syl 17 . . . 4  |-  ( ph  ->  ( ( card `  F
)  e.  om  \/  ( card `  G )  e.  om ) )
32 ordom 6715 . . . . 5  |-  Ord  om
33 ordelinel 5540 . . . . 5  |-  ( ( Ord  ( card `  F
)  /\  Ord  ( card `  G )  /\  Ord  om )  ->  ( (
( card `  F )  i^i  ( card `  G
) )  e.  om  <->  ( ( card `  F
)  e.  om  \/  ( card `  G )  e.  om ) ) )
348, 10, 32, 33mp3an 1360 . . . 4  |-  ( ( ( card `  F
)  i^i  ( card `  G ) )  e. 
om 
<->  ( ( card `  F
)  e.  om  \/  ( card `  G )  e.  om ) )
3531, 34sylibr 215 . . 3  |-  ( ph  ->  ( ( card `  F
)  i^i  ( card `  G ) )  e. 
om )
36 breq2 4427 . . . . . . . . . 10  |-  ( l  =  (/)  ->  ( f 
~~  l  <->  f  ~~  (/) ) )
37 breq2 4427 . . . . . . . . . 10  |-  ( l  =  (/)  ->  ( g 
~~  l  <->  g  ~~  (/) ) )
3836, 37orbi12d 714 . . . . . . . . 9  |-  ( l  =  (/)  ->  ( ( f  ~~  l  \/  g  ~~  l )  <-> 
( f  ~~  (/)  \/  g  ~~  (/) ) ) )
39383anbi1d 1339 . . . . . . . 8  |-  ( l  =  (/)  ->  ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  <-> 
( ( f  ~~  (/) 
\/  g  ~~  (/) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) ) )
4039imbi1d 318 . . . . . . 7  |-  ( l  =  (/)  ->  ( ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <-> 
( ( ( f 
~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h )  e.  I
)  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
41402ralbidv 2866 . . . . . 6  |-  ( l  =  (/)  ->  ( A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <->  A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
4241albidv 1761 . . . . 5  |-  ( l  =  (/)  ->  ( A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
4342imbi2d 317 . . . 4  |-  ( l  =  (/)  ->  ( (
ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
44 breq2 4427 . . . . . . . . . 10  |-  ( l  =  k  ->  (
f  ~~  l  <->  f  ~~  k ) )
45 breq2 4427 . . . . . . . . . 10  |-  ( l  =  k  ->  (
g  ~~  l  <->  g  ~~  k ) )
4644, 45orbi12d 714 . . . . . . . . 9  |-  ( l  =  k  ->  (
( f  ~~  l  \/  g  ~~  l )  <-> 
( f  ~~  k  \/  g  ~~  k ) ) )
47463anbi1d 1339 . . . . . . . 8  |-  ( l  =  k  ->  (
( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  <->  ( (
f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) ) )
4847imbi1d 318 . . . . . . 7  |-  ( l  =  k  ->  (
( ( ( f 
~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <-> 
( ( ( f 
~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
49482ralbidv 2866 . . . . . 6  |-  ( l  =  k  ->  ( A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
5049albidv 1761 . . . . 5  |-  ( l  =  k  ->  ( A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
5150imbi2d 317 . . . 4  |-  ( l  =  k  ->  (
( ph  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) ) )
52 breq2 4427 . . . . . . . . . 10  |-  ( l  =  suc  k  -> 
( f  ~~  l  <->  f 
~~  suc  k )
)
53 breq2 4427 . . . . . . . . . 10  |-  ( l  =  suc  k  -> 
( g  ~~  l  <->  g 
~~  suc  k )
)
5452, 53orbi12d 714 . . . . . . . . 9  |-  ( l  =  suc  k  -> 
( ( f  ~~  l  \/  g  ~~  l )  <->  ( f  ~~  suc  k  \/  g  ~~  suc  k ) ) )
55543anbi1d 1339 . . . . . . . 8  |-  ( l  =  suc  k  -> 
( ( ( f 
~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  <->  ( (
f  ~~  suc  k  \/  g  ~~  suc  k
)  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h )  e.  I
) ) )
5655imbi1d 318 . . . . . . 7  |-  ( l  =  suc  k  -> 
( ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  ( (
( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
57562ralbidv 2866 . . . . . 6  |-  ( l  =  suc  k  -> 
( A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
5857albidv 1761 . . . . 5  |-  ( l  =  suc  k  -> 
( A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  <->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
5958imbi2d 317 . . . 4  |-  ( l  =  suc  k  -> 
( ( ph  ->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
60 breq2 4427 . . . . . . . . . 10  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( f  ~~  l 
<->  f  ~~  ( (
card `  F )  i^i  ( card `  G
) ) ) )
61 breq2 4427 . . . . . . . . . 10  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( g  ~~  l 
<->  g  ~~  ( (
card `  F )  i^i  ( card `  G
) ) ) )
6260, 61orbi12d 714 . . . . . . . . 9  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( ( f 
~~  l  \/  g  ~~  l )  <->  ( f  ~~  ( ( card `  F
)  i^i  ( card `  G ) )  \/  g  ~~  ( (
card `  F )  i^i  ( card `  G
) ) ) ) )
63623anbi1d 1339 . . . . . . . 8  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  <-> 
( ( f  ~~  ( ( card `  F
)  i^i  ( card `  G ) )  \/  g  ~~  ( (
card `  F )  i^i  ( card `  G
) ) )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) ) )
6463imbi1d 318 . . . . . . 7  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  ( (
( f  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  g  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
65642ralbidv 2866 . . . . . 6  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  g  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
6665albidv 1761 . . . . 5  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  <->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  g  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
6766imbi2d 317 . . . 4  |-  ( l  =  ( ( card `  F )  i^i  ( card `  G ) )  ->  ( ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  l  \/  g  ~~  l )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  <->  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  g  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) ) )
681ad2antrr 730 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  ->  A  e.  (Moore `  X
) )
69 mreexexlem2d.2 . . . . . . . 8  |-  N  =  (mrCls `  A )
70 mreexexlem2d.3 . . . . . . . 8  |-  I  =  (mrInd `  A )
71 mreexexlem2d.4 . . . . . . . . 9  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
7271ad2antrr 730 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
73 simplrl 768 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
f  e.  ~P ( X  \  h ) )
7473elpwid 3991 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
f  C_  ( X  \  h ) )
75 simplrr 769 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
g  e.  ~P ( X  \  h ) )
7675elpwid 3991 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
g  C_  ( X  \  h ) )
77 simpr2 1012 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
f  C_  ( N `  ( g  u.  h
) ) )
78 simpr3 1013 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
( f  u.  h
)  e.  I )
79 simpr1 1011 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
( f  ~~  (/)  \/  g  ~~  (/) ) )
80 en0 7642 . . . . . . . . . 10  |-  ( f 
~~  (/)  <->  f  =  (/) )
81 en0 7642 . . . . . . . . . 10  |-  ( g 
~~  (/)  <->  g  =  (/) )
8280, 81orbi12i 523 . . . . . . . . 9  |-  ( ( f  ~~  (/)  \/  g  ~~  (/) )  <->  ( f  =  (/)  \/  g  =  (/) ) )
8379, 82sylib 199 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  -> 
( f  =  (/)  \/  g  =  (/) ) )
8468, 69, 70, 72, 74, 76, 77, 78, 83mreexexlem3d 15551 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  /\  ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I ) )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
8584ex 435 . . . . . 6  |-  ( (
ph  /\  ( f  e.  ~P ( X  \  h )  /\  g  e.  ~P ( X  \  h ) ) )  ->  ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
8685ralrimivva 2843 . . . . 5  |-  ( ph  ->  A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
8786alrimiv 1767 . . . 4  |-  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (/)  \/  g  ~~  (/) )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
88 nfv 1755 . . . . . . . . 9  |-  F/ h ph
89 nfv 1755 . . . . . . . . 9  |-  F/ h  k  e.  om
90 nfa1 1956 . . . . . . . . 9  |-  F/ h A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
9188, 89, 90nf3an 1990 . . . . . . . 8  |-  F/ h
( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
92 nfv 1755 . . . . . . . . . 10  |-  F/ f
ph
93 nfv 1755 . . . . . . . . . 10  |-  F/ f  k  e.  om
94 nfra1 2803 . . . . . . . . . . 11  |-  F/ f A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
9594nfal 2007 . . . . . . . . . 10  |-  F/ f A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
9692, 93, 95nf3an 1990 . . . . . . . . 9  |-  F/ f ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
97 nfv 1755 . . . . . . . . . . . . 13  |-  F/ g
ph
98 nfv 1755 . . . . . . . . . . . . 13  |-  F/ g  k  e.  om
99 nfra2 2809 . . . . . . . . . . . . . 14  |-  F/ g A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
10099nfal 2007 . . . . . . . . . . . . 13  |-  F/ g A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
10197, 98, 100nf3an 1990 . . . . . . . . . . . 12  |-  F/ g ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
102 nfv 1755 . . . . . . . . . . . 12  |-  F/ g  f  e.  ~P ( X  \  h )
103101, 102nfan 1988 . . . . . . . . . . 11  |-  F/ g ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  f  e.  ~P ( X  \  h ) )
10413ad2ant1 1026 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A  e.  (Moore `  X
) )
105104ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  A  e.  (Moore `  X ) )
106713ad2ant1 1026 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
107106ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
108 simplrl 768 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  f  e.  ~P ( X  \  h
) )
109108elpwid 3991 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  f  C_  ( X  \  h ) )
110 simplrr 769 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  g  e.  ~P ( X  \  h
) )
111110elpwid 3991 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  g  C_  ( X  \  h ) )
112 simpr2 1012 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  f  C_  ( N `  ( g  u.  h ) ) )
113 simpr3 1013 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  ( f  u.  h )  e.  I
)
114 simpll2 1045 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  k  e.  om )
115 simpll3 1046 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
116 simpr1 1011 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  ( f  ~~  suc  k  \/  g  ~~  suc  k ) )
117105, 69, 70, 107, 109, 111, 112, 113, 114, 115, 116mreexexlem4d 15552 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  /\  ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I ) )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )
118117ex 435 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  ( f  e.  ~P ( X  \  h
)  /\  g  e.  ~P ( X  \  h
) ) )  -> 
( ( ( f 
~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
119118expr 618 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  f  e.  ~P ( X  \  h ) )  ->  ( g  e. 
~P ( X  \  h )  ->  (
( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  ( g  u.  h
) )  /\  (
f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
120103, 119ralrimi 2822 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  om  /\  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  /\  f  e.  ~P ( X  \  h ) )  ->  A. g  e.  ~P  ( X  \  h
) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k
)  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h )  e.  I
)  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
121120ex 435 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  -> 
( f  e.  ~P ( X  \  h
)  ->  A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) )
12296, 121ralrimi 2822 . . . . . . . 8  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
12391, 122alrimi 1932 . . . . . . 7  |-  ( (
ph  /\  k  e.  om 
/\  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  ->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) )
1241233exp 1204 . . . . . 6  |-  ( ph  ->  ( k  e.  om  ->  ( A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) )  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
125124com12 32 . . . . 5  |-  ( k  e.  om  ->  ( ph  ->  ( A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) )  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
126125a2d 29 . . . 4  |-  ( k  e.  om  ->  (
( ph  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  k  \/  g  ~~  k )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )  -> 
( ph  ->  A. h A. f  e.  ~P  ( X  \  h
) A. g  e. 
~P  ( X  \  h ) ( ( ( f  ~~  suc  k  \/  g  ~~  suc  k )  /\  f  C_  ( N `  (
g  u.  h ) )  /\  ( f  u.  h )  e.  I )  ->  E. i  e.  ~P  g ( f 
~~  i  /\  (
i  u.  h )  e.  I ) ) ) ) )
12743, 51, 59, 67, 87, 126finds 6733 . . 3  |-  ( ( ( card `  F
)  i^i  ( card `  G ) )  e. 
om  ->  ( ph  ->  A. h A. f  e. 
~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  g  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) ) )
12835, 127mpcom 37 . 2  |-  ( ph  ->  A. h A. f  e.  ~P  ( X  \  h ) A. g  e.  ~P  ( X  \  h ) ( ( ( f  ~~  (
( card `  F )  i^i  ( card `  G
) )  \/  g  ~~  ( ( card `  F
)  i^i  ( card `  G ) ) )  /\  f  C_  ( N `  ( g  u.  h ) )  /\  ( f  u.  h
)  e.  I )  ->  E. i  e.  ~P  g ( f  ~~  i  /\  ( i  u.  h )  e.  I
) ) )
1292, 3, 4, 5, 6, 26, 128mreexexlemd 15549 1  |-  ( ph  ->  E. q  e.  ~P  G ( F  ~~  q  /\  ( q  u.  H )  e.  I
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1872   A.wral 2771   E.wrex 2772   _Vcvv 3080    \ cdif 3433    u. cun 3434    i^i cin 3435    C_ wss 3436   (/)c0 3761   ~Pcpw 3981   {csn 3998   class class class wbr 4423   Ord word 5441   suc csuc 5444   ` cfv 5601   omcom 6706    ~~ cen 7577   Fincfn 7580   cardccrd 8377  Moorecmre 15487  mrClscmrc 15488  mrIndcmri 15489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-ac2 8900
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-om 6707  df-wrecs 7039  df-recs 7101  df-1o 7193  df-er 7374  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-card 8381  df-ac 8554  df-mre 15491  df-mrc 15492  df-mri 15493
This theorem is referenced by:  mreexdomd  15554  aacllem  40162
  Copyright terms: Public domain W3C validator