MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreclatBAD Structured version   Unicode version

Theorem mreclatBAD 15369
Description: A Moore space is a complete lattice under inclusion. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6064 update): Reprove using isclat 15291 instead of the isclatBAD. hypothesis. See commented-out mreclat above.
Hypotheses
Ref Expression
mreclat.i  |-  I  =  (toInc `  C )
isclatBAD.  |-  ( I  e.  CLat  <->  ( I  e. 
Poset  /\  A. x ( x  C_  ( Base `  I )  ->  (
( ( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
Assertion
Ref Expression
mreclatBAD  |-  ( C  e.  (Moore `  X
)  ->  I  e.  CLat )
Distinct variable groups:    x, I    x, C    x, X

Proof of Theorem mreclatBAD
StepHypRef Expression
1 mreclat.i . . . 4  |-  I  =  (toInc `  C )
21ipopos 15342 . . 3  |-  I  e. 
Poset
32a1i 11 . 2  |-  ( C  e.  (Moore `  X
)  ->  I  e.  Poset
)
4 eqid 2443 . . . . . . . 8  |-  (mrCls `  C )  =  (mrCls `  C )
5 eqid 2443 . . . . . . . 8  |-  ( lub `  I )  =  ( lub `  I )
61, 4, 5mrelatlub 15368 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( lub `  I
) `  x )  =  ( (mrCls `  C ) `  U. x ) )
7 uniss 4124 . . . . . . . . . 10  |-  ( x 
C_  C  ->  U. x  C_ 
U. C )
87adantl 466 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  U. x  C_ 
U. C )
9 mreuni 14550 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  U. C  =  X )
109adantr 465 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  U. C  =  X )
118, 10sseqtrd 3404 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  U. x  C_  X )
124mrccl 14561 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  U. x  C_  X )  -> 
( (mrCls `  C
) `  U. x )  e.  C )
1311, 12syldan 470 . . . . . . 7  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
(mrCls `  C ) `  U. x )  e.  C )
146, 13eqeltrd 2517 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( lub `  I
) `  x )  e.  C )
15 fveq2 5703 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( glb `  I ) `
 x )  =  ( ( glb `  I
) `  (/) ) )
1615adantl 466 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  x )  =  ( ( glb `  I ) `  (/) ) )
17 eqid 2443 . . . . . . . . . . 11  |-  ( glb `  I )  =  ( glb `  I )
181, 17mrelatglb0 15367 . . . . . . . . . 10  |-  ( C  e.  (Moore `  X
)  ->  ( ( glb `  I ) `  (/) )  =  X )
1918ad2antrr 725 . . . . . . . . 9  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  (/) )  =  X )
2016, 19eqtrd 2475 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  x )  =  X )
21 mre1cl 14544 . . . . . . . . 9  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
2221ad2antrr 725 . . . . . . . 8  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  X  e.  C )
2320, 22eqeltrd 2517 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =  (/) )  ->  (
( glb `  I
) `  x )  e.  C )
241, 17mrelatglb 15366 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( ( glb `  I ) `
 x )  = 
|^| x )
25 mreintcl 14545 . . . . . . . . 9  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  e.  C )
2624, 25eqeltrd 2517 . . . . . . . 8  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( ( glb `  I ) `
 x )  e.  C )
27263expa 1187 . . . . . . 7  |-  ( ( ( C  e.  (Moore `  X )  /\  x  C_  C )  /\  x  =/=  (/) )  ->  (
( glb `  I
) `  x )  e.  C )
2823, 27pm2.61dane 2701 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( glb `  I
) `  x )  e.  C )
2914, 28jca 532 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C )  ->  (
( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) )
3029ex 434 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  ( x  C_  C  ->  ( (
( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) ) )
311ipobas 15337 . . . . 5  |-  ( C  e.  (Moore `  X
)  ->  C  =  ( Base `  I )
)
32 sseq2 3390 . . . . . 6  |-  ( C  =  ( Base `  I
)  ->  ( x  C_  C  <->  x  C_  ( Base `  I ) ) )
33 eleq2 2504 . . . . . . 7  |-  ( C  =  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  C  <->  ( ( lub `  I ) `  x
)  e.  ( Base `  I ) ) )
34 eleq2 2504 . . . . . . 7  |-  ( C  =  ( Base `  I
)  ->  ( (
( glb `  I
) `  x )  e.  C  <->  ( ( glb `  I ) `  x
)  e.  ( Base `  I ) ) )
3533, 34anbi12d 710 . . . . . 6  |-  ( C  =  ( Base `  I
)  ->  ( (
( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C )  <->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) )
3632, 35imbi12d 320 . . . . 5  |-  ( C  =  ( Base `  I
)  ->  ( (
x  C_  C  ->  ( ( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) )  <->  ( x  C_  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
3731, 36syl 16 . . . 4  |-  ( C  e.  (Moore `  X
)  ->  ( (
x  C_  C  ->  ( ( ( lub `  I
) `  x )  e.  C  /\  (
( glb `  I
) `  x )  e.  C ) )  <->  ( x  C_  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
3830, 37mpbid 210 . . 3  |-  ( C  e.  (Moore `  X
)  ->  ( x  C_  ( Base `  I
)  ->  ( (
( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) )
3938alrimiv 1685 . 2  |-  ( C  e.  (Moore `  X
)  ->  A. x
( x  C_  ( Base `  I )  -> 
( ( ( lub `  I ) `  x
)  e.  ( Base `  I )  /\  (
( glb `  I
) `  x )  e.  ( Base `  I
) ) ) )
40 isclatBAD. . 2  |-  ( I  e.  CLat  <->  ( I  e. 
Poset  /\  A. x ( x  C_  ( Base `  I )  ->  (
( ( lub `  I
) `  x )  e.  ( Base `  I
)  /\  ( ( glb `  I ) `  x )  e.  (
Base `  I )
) ) ) )
413, 39, 40sylanbrc 664 1  |-  ( C  e.  (Moore `  X
)  ->  I  e.  CLat )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    e. wcel 1756    =/= wne 2618    C_ wss 3340   (/)c0 3649   U.cuni 4103   |^|cint 4140   ` cfv 5430   Basecbs 14186  Moorecmre 14532  mrClscmrc 14533   Posetcpo 15122   lubclub 15124   glbcglb 15125   CLatccla 15289  toInccipo 15333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-fz 11450  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-tset 14269  df-ple 14270  df-ocomp 14271  df-mre 14536  df-mrc 14537  df-poset 15128  df-lub 15156  df-glb 15157  df-odu 15311  df-ipo 15334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator