MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreacs Unicode version

Theorem mreacs 13838
Description: Algebraicity is a composible property; combining several algebraic closure properties gives another. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreacs  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )

Proof of Theorem mreacs
Dummy variables  a 
b  c  x  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . 3  |-  ( x  =  X  ->  (ACS `  x )  =  (ACS
`  X ) )
2 pweq 3762 . . . 4  |-  ( x  =  X  ->  ~P x  =  ~P X
)
32fveq2d 5691 . . 3  |-  ( x  =  X  ->  (Moore `  ~P x )  =  (Moore `  ~P X ) )
41, 3eleq12d 2472 . 2  |-  ( x  =  X  ->  (
(ACS `  x )  e.  (Moore `  ~P x
)  <->  (ACS `  X )  e.  (Moore `  ~P X ) ) )
5 acsmre 13832 . . . . . . . 8  |-  ( a  e.  (ACS `  x
)  ->  a  e.  (Moore `  x ) )
6 mresspw 13772 . . . . . . . 8  |-  ( a  e.  (Moore `  x
)  ->  a  C_  ~P x )
75, 6syl 16 . . . . . . 7  |-  ( a  e.  (ACS `  x
)  ->  a  C_  ~P x )
8 vex 2919 . . . . . . . 8  |-  a  e. 
_V
98elpw 3765 . . . . . . 7  |-  ( a  e.  ~P ~P x  <->  a 
C_  ~P x )
107, 9sylibr 204 . . . . . 6  |-  ( a  e.  (ACS `  x
)  ->  a  e.  ~P ~P x )
1110ssriv 3312 . . . . 5  |-  (ACS `  x )  C_  ~P ~P x
1211a1i 11 . . . 4  |-  (  T. 
->  (ACS `  x )  C_ 
~P ~P x )
13 vex 2919 . . . . . . . 8  |-  x  e. 
_V
14 mremre 13784 . . . . . . . 8  |-  ( x  e.  _V  ->  (Moore `  x )  e.  (Moore `  ~P x ) )
1513, 14mp1i 12 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  (Moore `  x
)  e.  (Moore `  ~P x ) )
165ssriv 3312 . . . . . . . 8  |-  (ACS `  x )  C_  (Moore `  x )
17 sstr 3316 . . . . . . . 8  |-  ( ( a  C_  (ACS `  x
)  /\  (ACS `  x
)  C_  (Moore `  x
) )  ->  a  C_  (Moore `  x )
)
1816, 17mpan2 653 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  a  C_  (Moore `  x ) )
19 mrerintcl 13777 . . . . . . 7  |-  ( ( (Moore `  x )  e.  (Moore `  ~P x
)  /\  a  C_  (Moore `  x ) )  ->  ( ~P x  i^i  |^| a )  e.  (Moore `  x )
)
2015, 18, 19syl2anc 643 . . . . . 6  |-  ( a 
C_  (ACS `  x
)  ->  ( ~P x  i^i  |^| a )  e.  (Moore `  x )
)
21 ssel2 3303 . . . . . . . . . . . . . . . 16  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  d  e.  (ACS `  x )
)
2221acsmred 13836 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  d  e.  (Moore `  x )
)
23 eqid 2404 . . . . . . . . . . . . . . 15  |-  (mrCls `  d )  =  (mrCls `  d )
2422, 23mrcssvd 13803 . . . . . . . . . . . . . 14  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  (
(mrCls `  d ) `  c )  C_  x
)
2524ralrimiva 2749 . . . . . . . . . . . . 13  |-  ( a 
C_  (ACS `  x
)  ->  A. d  e.  a  ( (mrCls `  d ) `  c
)  C_  x )
2625adantr 452 . . . . . . . . . . . 12  |-  ( ( a  C_  (ACS `  x
)  /\  c  e.  ~P x )  ->  A. d  e.  a  ( (mrCls `  d ) `  c
)  C_  x )
27 iunss 4092 . . . . . . . . . . . 12  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  c )  C_  x  <->  A. d  e.  a  ( (mrCls `  d ) `  c )  C_  x
)
2826, 27sylibr 204 . . . . . . . . . . 11  |-  ( ( a  C_  (ACS `  x
)  /\  c  e.  ~P x )  ->  U_ d  e.  a  ( (mrCls `  d ) `  c
)  C_  x )
2913elpw2 4324 . . . . . . . . . . 11  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  c )  e.  ~P x 
<-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )  C_  x )
3028, 29sylibr 204 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  c  e.  ~P x )  ->  U_ d  e.  a  ( (mrCls `  d ) `  c
)  e.  ~P x
)
31 eqid 2404 . . . . . . . . . 10  |-  ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) )  =  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
)
3230, 31fmptd 5852 . . . . . . . . 9  |-  ( a 
C_  (ACS `  x
)  ->  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) : ~P x
--> ~P x )
33 fssxp 5561 . . . . . . . . 9  |-  ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) : ~P x --> ~P x  ->  ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) )  C_  ( ~P x  X.  ~P x ) )
3432, 33syl 16 . . . . . . . 8  |-  ( a 
C_  (ACS `  x
)  ->  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  C_  ( ~P x  X.  ~P x
) )
3513pwex 4342 . . . . . . . . 9  |-  ~P x  e.  _V
3635, 35xpex 4949 . . . . . . . 8  |-  ( ~P x  X.  ~P x
)  e.  _V
37 ssexg 4309 . . . . . . . 8  |-  ( ( ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
)  C_  ( ~P x  X.  ~P x )  /\  ( ~P x  X.  ~P x )  e. 
_V )  ->  (
c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
)  e.  _V )
3834, 36, 37sylancl 644 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  e.  _V )
3921adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  d  e.  a )  ->  d  e.  (ACS `  x ) )
40 elpwi 3767 . . . . . . . . . . . . . 14  |-  ( b  e.  ~P x  -> 
b  C_  x )
4140ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  d  e.  a )  ->  b  C_  x )
4223acsfiel2 13835 . . . . . . . . . . . . 13  |-  ( ( d  e.  (ACS `  x )  /\  b  C_  x )  ->  (
b  e.  d  <->  A. e  e.  ( ~P b  i^i 
Fin ) ( (mrCls `  d ) `  e
)  C_  b )
)
4339, 41, 42syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  d  e.  a )  ->  ( b  e.  d  <->  A. e  e.  ( ~P b  i^i  Fin )
( (mrCls `  d
) `  e )  C_  b ) )
4443ralbidva 2682 . . . . . . . . . . 11  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( A. d  e.  a 
b  e.  d  <->  A. d  e.  a  A. e  e.  ( ~P b  i^i 
Fin ) ( (mrCls `  d ) `  e
)  C_  b )
)
45 iunss 4092 . . . . . . . . . . . . 13  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. d  e.  a  ( (mrCls `  d ) `  e )  C_  b
)
4645ralbii 2690 . . . . . . . . . . . 12  |-  ( A. e  e.  ( ~P b  i^i  Fin ) U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. e  e.  ( ~P b  i^i  Fin ) A. d  e.  a 
( (mrCls `  d
) `  e )  C_  b )
47 ralcom 2828 . . . . . . . . . . . 12  |-  ( A. e  e.  ( ~P b  i^i  Fin ) A. d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. d  e.  a  A. e  e.  ( ~P b  i^i  Fin ) ( (mrCls `  d ) `  e )  C_  b
)
4846, 47bitri 241 . . . . . . . . . . 11  |-  ( A. e  e.  ( ~P b  i^i  Fin ) U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  b  <->  A. d  e.  a  A. e  e.  ( ~P b  i^i  Fin ) ( (mrCls `  d ) `  e )  C_  b
)
4944, 48syl6bbr 255 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( A. d  e.  a 
b  e.  d  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
50 elrint2 4052 . . . . . . . . . . 11  |-  ( b  e.  ~P x  -> 
( b  e.  ( ~P x  i^i  |^| a )  <->  A. d  e.  a  b  e.  d ) )
5150adantl 453 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  (
b  e.  ( ~P x  i^i  |^| a
)  <->  A. d  e.  a  b  e.  d ) )
52 funmpt 5448 . . . . . . . . . . . . 13  |-  Fun  (
c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
)
53 funiunfv 5954 . . . . . . . . . . . . 13  |-  ( Fun  ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
)  ->  U_ e  e.  ( ~P b  i^i 
Fin ) ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  =  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) ) )
5452, 53ax-mp 8 . . . . . . . . . . . 12  |-  U_ e  e.  ( ~P b  i^i 
Fin ) ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  =  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )
5554sseq1i 3332 . . . . . . . . . . 11  |-  ( U_ e  e.  ( ~P b  i^i  Fin ) ( ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  C_  b  <->  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )  C_  b )
56 iunss 4092 . . . . . . . . . . . 12  |-  ( U_ e  e.  ( ~P b  i^i  Fin ) ( ( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  C_  b  <->  A. e  e.  ( ~P b  i^i  Fin ) ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) `  e )  C_  b
)
57 inss1 3521 . . . . . . . . . . . . . . . . 17  |-  ( ~P b  i^i  Fin )  C_ 
~P b
58 sspwb 4373 . . . . . . . . . . . . . . . . . . 19  |-  ( b 
C_  x  <->  ~P b  C_ 
~P x )
5940, 58sylib 189 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ~P x  ->  ~P b  C_  ~P x
)
6059adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ~P b  C_  ~P x )
6157, 60syl5ss 3319 . . . . . . . . . . . . . . . 16  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( ~P b  i^i  Fin )  C_ 
~P x )
6261sselda 3308 . . . . . . . . . . . . . . 15  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  e  e.  ~P x )
6322, 23mrcssvd 13803 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  C_  (ACS `  x
)  /\  d  e.  a )  ->  (
(mrCls `  d ) `  e )  C_  x
)
6463ralrimiva 2749 . . . . . . . . . . . . . . . . . 18  |-  ( a 
C_  (ACS `  x
)  ->  A. d  e.  a  ( (mrCls `  d ) `  e
)  C_  x )
6564ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  A. d  e.  a  ( (mrCls `  d
) `  e )  C_  x )
66 iunss 4092 . . . . . . . . . . . . . . . . 17  |-  ( U_ d  e.  a  (
(mrCls `  d ) `  e )  C_  x  <->  A. d  e.  a  ( (mrCls `  d ) `  e )  C_  x
)
6765, 66sylibr 204 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  U_ d  e.  a  ( (mrCls `  d
) `  e )  C_  x )
68 ssexg 4309 . . . . . . . . . . . . . . . 16  |-  ( (
U_ d  e.  a  ( (mrCls `  d
) `  e )  C_  x  /\  x  e. 
_V )  ->  U_ d  e.  a  ( (mrCls `  d ) `  e
)  e.  _V )
6967, 13, 68sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  U_ d  e.  a  ( (mrCls `  d
) `  e )  e.  _V )
70 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( c  =  e  ->  (
(mrCls `  d ) `  c )  =  ( (mrCls `  d ) `  e ) )
7170iuneq2d 4078 . . . . . . . . . . . . . . . 16  |-  ( c  =  e  ->  U_ d  e.  a  ( (mrCls `  d ) `  c
)  =  U_ d  e.  a  ( (mrCls `  d ) `  e
) )
7271, 31fvmptg 5763 . . . . . . . . . . . . . . 15  |-  ( ( e  e.  ~P x  /\  U_ d  e.  a  ( (mrCls `  d
) `  e )  e.  _V )  ->  (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  =  U_ d  e.  a  ( (mrCls `  d
) `  e )
)
7362, 69, 72syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) `  e )  =  U_ d  e.  a  (
(mrCls `  d ) `  e ) )
7473sseq1d 3335 . . . . . . . . . . . . 13  |-  ( ( ( a  C_  (ACS `  x )  /\  b  e.  ~P x )  /\  e  e.  ( ~P b  i^i  Fin ) )  ->  ( ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) `  e )  C_  b  <->  U_ d  e.  a  ( (mrCls `  d
) `  e )  C_  b ) )
7574ralbidva 2682 . . . . . . . . . . . 12  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( A. e  e.  ( ~P b  i^i  Fin )
( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) `  e
)  C_  b  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
7656, 75syl5bb 249 . . . . . . . . . . 11  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( U_ e  e.  ( ~P b  i^i  Fin )
( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) `  e
)  C_  b  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
7755, 76syl5bbr 251 . . . . . . . . . 10  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  ( U. ( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) " ( ~P b  i^i  Fin )
)  C_  b  <->  A. e  e.  ( ~P b  i^i 
Fin ) U_ d  e.  a  ( (mrCls `  d ) `  e
)  C_  b )
)
7849, 51, 773bitr4d 277 . . . . . . . . 9  |-  ( ( a  C_  (ACS `  x
)  /\  b  e.  ~P x )  ->  (
b  e.  ( ~P x  i^i  |^| a
)  <->  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )  C_  b ) )
7978ralrimiva 2749 . . . . . . . 8  |-  ( a 
C_  (ACS `  x
)  ->  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
)
8032, 79jca 519 . . . . . . 7  |-  ( a 
C_  (ACS `  x
)  ->  ( (
c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) : ~P x --> ~P x  /\  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
) )
81 feq1 5535 . . . . . . . . 9  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
f : ~P x --> ~P x  <->  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) : ~P x
--> ~P x ) )
82 imaeq1 5157 . . . . . . . . . . . . 13  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
f " ( ~P b  i^i  Fin )
)  =  ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
) )
8382unieqd 3986 . . . . . . . . . . . 12  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  U. (
f " ( ~P b  i^i  Fin )
)  =  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
) )
8483sseq1d 3335 . . . . . . . . . . 11  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  ( U. ( f " ( ~P b  i^i  Fin )
)  C_  b  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
)
8584bibi2d 310 . . . . . . . . . 10  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )  <->  ( b  e.  ( ~P x  i^i  |^| a
)  <->  U. ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) "
( ~P b  i^i 
Fin ) )  C_  b ) ) )
8685ralbidv 2686 . . . . . . . . 9  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  ( A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )  <->  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
) )
8781, 86anbi12d 692 . . . . . . . 8  |-  ( f  =  ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) )  ->  (
( f : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
)  <->  ( ( c  e.  ~P x  |->  U_ d  e.  a  (
(mrCls `  d ) `  c ) ) : ~P x --> ~P x  /\  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
) ) )
8887spcegv 2997 . . . . . . 7  |-  ( ( c  e.  ~P x  |-> 
U_ d  e.  a  ( (mrCls `  d
) `  c )
)  e.  _V  ->  ( ( ( c  e. 
~P x  |->  U_ d  e.  a  ( (mrCls `  d ) `  c
) ) : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
( c  e.  ~P x  |->  U_ d  e.  a  ( (mrCls `  d
) `  c )
) " ( ~P b  i^i  Fin )
)  C_  b )
)  ->  E. f
( f : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
) ) )
8938, 80, 88sylc 58 . . . . . 6  |-  ( a 
C_  (ACS `  x
)  ->  E. f
( f : ~P x
--> ~P x  /\  A. b  e.  ~P  x
( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
) )
90 isacs 13831 . . . . . 6  |-  ( ( ~P x  i^i  |^| a )  e.  (ACS
`  x )  <->  ( ( ~P x  i^i  |^| a
)  e.  (Moore `  x )  /\  E. f ( f : ~P x --> ~P x  /\  A. b  e.  ~P  x ( b  e.  ( ~P x  i^i  |^| a )  <->  U. (
f " ( ~P b  i^i  Fin )
)  C_  b )
) ) )
9120, 89, 90sylanbrc 646 . . . . 5  |-  ( a 
C_  (ACS `  x
)  ->  ( ~P x  i^i  |^| a )  e.  (ACS `  x )
)
9291adantl 453 . . . 4  |-  ( (  T.  /\  a  C_  (ACS `  x ) )  ->  ( ~P x  i^i  |^| a )  e.  (ACS `  x )
)
9312, 92ismred2 13783 . . 3  |-  (  T. 
->  (ACS `  x )  e.  (Moore `  ~P x
) )
9493trud 1329 . 2  |-  (ACS `  x )  e.  (Moore `  ~P x )
954, 94vtoclg 2971 1  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    T. wtru 1322   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   U.cuni 3975   |^|cint 4010   U_ciun 4053    e. cmpt 4226    X. cxp 4835   "cima 4840   Fun wfun 5407   -->wf 5409   ` cfv 5413   Fincfn 7068  Moorecmre 13762  mrClscmrc 13763  ACScacs 13765
This theorem is referenced by:  acsfn1  13841  acsfn1c  13842  acsfn2  13843  submacs  14720  subgacs  14930  nsgacs  14931  lssacs  15998  acsfn1p  27375  subrgacs  27376  sdrgacs  27377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-mre 13766  df-mrc 13767  df-acs 13769
  Copyright terms: Public domain W3C validator