MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcss Structured version   Unicode version

Theorem mrcss 15023
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcss  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  U )  C_  ( F `  V
) )

Proof of Theorem mrcss
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 sstr2 3424 . . . . . 6  |-  ( U 
C_  V  ->  ( V  C_  s  ->  U  C_  s ) )
21adantr 463 . . . . 5  |-  ( ( U  C_  V  /\  s  e.  C )  ->  ( V  C_  s  ->  U  C_  s )
)
32ss2rabdv 3495 . . . 4  |-  ( U 
C_  V  ->  { s  e.  C  |  V  C_  s }  C_  { s  e.  C  |  U  C_  s } )
4 intss 4220 . . . 4  |-  ( { s  e.  C  |  V  C_  s }  C_  { s  e.  C  |  U  C_  s }  ->  |^|
{ s  e.  C  |  U  C_  s } 
C_  |^| { s  e.  C  |  V  C_  s } )
53, 4syl 16 . . 3  |-  ( U 
C_  V  ->  |^| { s  e.  C  |  U  C_  s }  C_  |^| { s  e.  C  |  V  C_  s } )
653ad2ant2 1016 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  |^| { s  e.  C  |  U  C_  s }  C_  |^| { s  e.  C  |  V  C_  s } )
7 simp1 994 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  C  e.  (Moore `  X )
)
8 sstr 3425 . . . 4  |-  ( ( U  C_  V  /\  V  C_  X )  ->  U  C_  X )
983adant1 1012 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  U  C_  X )
10 mrcfval.f . . . 4  |-  F  =  (mrCls `  C )
1110mrcval 15017 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
127, 9, 11syl2anc 659 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
1310mrcval 15017 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  V  C_  X )  ->  ( F `  V )  =  |^| { s  e.  C  |  V  C_  s } )
14133adant2 1013 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  V )  =  |^| { s  e.  C  |  V  C_  s } )
156, 12, 143sstr4d 3460 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  U )  C_  ( F `  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971    = wceq 1399    e. wcel 1826   {crab 2736    C_ wss 3389   |^|cint 4199   ` cfv 5496  Moorecmre 14989  mrClscmrc 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-int 4200  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-fv 5504  df-mre 14993  df-mrc 14994
This theorem is referenced by:  mrcsscl  15027  mrcuni  15028  mrcssd  15031  ismrc  30799  isnacs3  30808
  Copyright terms: Public domain W3C validator