MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcss Structured version   Unicode version

Theorem mrcss 14885
Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
mrcss  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  U )  C_  ( F `  V
) )

Proof of Theorem mrcss
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 sstr2 3493 . . . . . 6  |-  ( U 
C_  V  ->  ( V  C_  s  ->  U  C_  s ) )
21adantr 465 . . . . 5  |-  ( ( U  C_  V  /\  s  e.  C )  ->  ( V  C_  s  ->  U  C_  s )
)
32ss2rabdv 3563 . . . 4  |-  ( U 
C_  V  ->  { s  e.  C  |  V  C_  s }  C_  { s  e.  C  |  U  C_  s } )
4 intss 4289 . . . 4  |-  ( { s  e.  C  |  V  C_  s }  C_  { s  e.  C  |  U  C_  s }  ->  |^|
{ s  e.  C  |  U  C_  s } 
C_  |^| { s  e.  C  |  V  C_  s } )
53, 4syl 16 . . 3  |-  ( U 
C_  V  ->  |^| { s  e.  C  |  U  C_  s }  C_  |^| { s  e.  C  |  V  C_  s } )
653ad2ant2 1017 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  |^| { s  e.  C  |  U  C_  s }  C_  |^| { s  e.  C  |  V  C_  s } )
7 simp1 995 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  C  e.  (Moore `  X )
)
8 sstr 3494 . . . 4  |-  ( ( U  C_  V  /\  V  C_  X )  ->  U  C_  X )
983adant1 1013 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  U  C_  X )
10 mrcfval.f . . . 4  |-  F  =  (mrCls `  C )
1110mrcval 14879 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
127, 9, 11syl2anc 661 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  U )  =  |^| { s  e.  C  |  U  C_  s } )
1310mrcval 14879 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  V  C_  X )  ->  ( F `  V )  =  |^| { s  e.  C  |  V  C_  s } )
14133adant2 1014 . 2  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  V )  =  |^| { s  e.  C  |  V  C_  s } )
156, 12, 143sstr4d 3529 1  |-  ( ( C  e.  (Moore `  X )  /\  U  C_  V  /\  V  C_  X )  ->  ( F `  U )  C_  ( F `  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 972    = wceq 1381    e. wcel 1802   {crab 2795    C_ wss 3458   |^|cint 4267   ` cfv 5574  Moorecmre 14851  mrClscmrc 14852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-int 4268  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-fv 5582  df-mre 14855  df-mrc 14856
This theorem is referenced by:  mrcsscl  14889  mrcuni  14890  mrcssd  14893  ismrc  30601  isnacs3  30610
  Copyright terms: Public domain W3C validator