MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcflem Structured version   Unicode version

Theorem mrcflem 15095
Description: The domain and range of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mrcflem  |-  ( C  e.  (Moore `  X
)  ->  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) : ~P X --> C )
Distinct variable groups:    x, s, C    x, X, s

Proof of Theorem mrcflem
StepHypRef Expression
1 simpl 455 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  C  e.  (Moore `  X
) )
2 ssrab2 3571 . . . 4  |-  { s  e.  C  |  x 
C_  s }  C_  C
32a1i 11 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  { s  e.  C  |  x  C_  s } 
C_  C )
4 mre1cl 15083 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
54adantr 463 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  X  e.  C )
6 elpwi 4008 . . . . . 6  |-  ( x  e.  ~P X  ->  x  C_  X )
76adantl 464 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  x  C_  X )
8 sseq2 3511 . . . . . 6  |-  ( s  =  X  ->  (
x  C_  s  <->  x  C_  X
) )
98elrab 3254 . . . . 5  |-  ( X  e.  { s  e.  C  |  x  C_  s }  <->  ( X  e.  C  /\  x  C_  X ) )
105, 7, 9sylanbrc 662 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  X  e.  { s  e.  C  |  x  C_  s } )
11 ne0i 3789 . . . 4  |-  ( X  e.  { s  e.  C  |  x  C_  s }  ->  { s  e.  C  |  x 
C_  s }  =/=  (/) )
1210, 11syl 16 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  { s  e.  C  |  x  C_  s }  =/=  (/) )
13 mreintcl 15084 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  {
s  e.  C  |  x  C_  s }  C_  C  /\  { s  e.  C  |  x  C_  s }  =/=  (/) )  ->  |^| { s  e.  C  |  x  C_  s }  e.  C )
141, 3, 12, 13syl3anc 1226 . 2  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  |^| { s  e.  C  |  x  C_  s }  e.  C )
15 eqid 2454 . 2  |-  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } )  =  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } )
1614, 15fmptd 6031 1  |-  ( C  e.  (Moore `  X
)  ->  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) : ~P X --> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1823    =/= wne 2649   {crab 2808    C_ wss 3461   (/)c0 3783   ~Pcpw 3999   |^|cint 4271    |-> cmpt 4497   -->wf 5566   ` cfv 5570  Moorecmre 15071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-int 4272  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578  df-mre 15075
This theorem is referenced by:  fnmrc  15096  mrcfval  15097  mrcf  15098
  Copyright terms: Public domain W3C validator