MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptscmfsupp0 Structured version   Unicode version

Theorem mptscmfsupp0 17555
Description: A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019.)
Hypotheses
Ref Expression
mptscmfsupp0.d  |-  ( ph  ->  D  e.  V )
mptscmfsupp0.q  |-  ( ph  ->  Q  e.  LMod )
mptscmfsupp0.r  |-  ( ph  ->  R  =  (Scalar `  Q ) )
mptscmfsupp0.k  |-  K  =  ( Base `  Q
)
mptscmfsupp0.s  |-  ( (
ph  /\  k  e.  D )  ->  S  e.  B )
mptscmfsupp0.w  |-  ( (
ph  /\  k  e.  D )  ->  W  e.  K )
mptscmfsupp0.0  |-  .0.  =  ( 0g `  Q )
mptscmfsupp0.z  |-  Z  =  ( 0g `  R
)
mptscmfsupp0.m  |-  .*  =  ( .s `  Q )
mptscmfsupp0.f  |-  ( ph  ->  ( k  e.  D  |->  S ) finSupp  Z )
Assertion
Ref Expression
mptscmfsupp0  |-  ( ph  ->  ( k  e.  D  |->  ( S  .*  W
) ) finSupp  .0.  )
Distinct variable groups:    B, k    D, k    k, K    ph, k    .* , k
Allowed substitution hints:    Q( k)    R( k)    S( k)    V( k)    W( k)    .0. ( k)    Z( k)

Proof of Theorem mptscmfsupp0
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 mptscmfsupp0.d . . 3  |-  ( ph  ->  D  e.  V )
2 mptexg 6127 . . 3  |-  ( D  e.  V  ->  (
k  e.  D  |->  ( S  .*  W ) )  e.  _V )
31, 2syl 16 . 2  |-  ( ph  ->  ( k  e.  D  |->  ( S  .*  W
) )  e.  _V )
4 funmpt 5614 . . 3  |-  Fun  (
k  e.  D  |->  ( S  .*  W ) )
54a1i 11 . 2  |-  ( ph  ->  Fun  ( k  e.  D  |->  ( S  .*  W ) ) )
6 mptscmfsupp0.0 . . . 4  |-  .0.  =  ( 0g `  Q )
7 fvex 5866 . . . 4  |-  ( 0g
`  Q )  e. 
_V
86, 7eqeltri 2527 . . 3  |-  .0.  e.  _V
98a1i 11 . 2  |-  ( ph  ->  .0.  e.  _V )
10 mptscmfsupp0.f . . 3  |-  ( ph  ->  ( k  e.  D  |->  S ) finSupp  Z )
1110fsuppimpd 7838 . 2  |-  ( ph  ->  ( ( k  e.  D  |->  S ) supp  Z
)  e.  Fin )
12 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  d  e.  D )  ->  d  e.  D )
13 mptscmfsupp0.s . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  D )  ->  S  e.  B )
1413ralrimiva 2857 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  D  S  e.  B )
1514adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  D )  ->  A. k  e.  D  S  e.  B )
16 rspcsbela 3839 . . . . . . . . 9  |-  ( ( d  e.  D  /\  A. k  e.  D  S  e.  B )  ->  [_ d  /  k ]_ S  e.  B )
1712, 15, 16syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  d  e.  D )  ->  [_ d  /  k ]_ S  e.  B )
18 eqid 2443 . . . . . . . . 9  |-  ( k  e.  D  |->  S )  =  ( k  e.  D  |->  S )
1918fvmpts 5943 . . . . . . . 8  |-  ( ( d  e.  D  /\  [_ d  /  k ]_ S  e.  B )  ->  ( ( k  e.  D  |->  S ) `  d )  =  [_ d  /  k ]_ S
)
2012, 17, 19syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  d  e.  D )  ->  (
( k  e.  D  |->  S ) `  d
)  =  [_ d  /  k ]_ S
)
2120eqeq1d 2445 . . . . . 6  |-  ( (
ph  /\  d  e.  D )  ->  (
( ( k  e.  D  |->  S ) `  d )  =  Z  <->  [_ d  /  k ]_ S  =  Z
) )
22 oveq1 6288 . . . . . . . . 9  |-  ( [_ d  /  k ]_ S  =  Z  ->  ( [_ d  /  k ]_ S  .*  [_ d  /  k ]_ W )  =  ( Z  .*  [_ d  /  k ]_ W
) )
23 mptscmfsupp0.z . . . . . . . . . . . 12  |-  Z  =  ( 0g `  R
)
24 mptscmfsupp0.r . . . . . . . . . . . . . 14  |-  ( ph  ->  R  =  (Scalar `  Q ) )
2524adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  D )  ->  R  =  (Scalar `  Q )
)
2625fveq2d 5860 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  D )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  Q ) ) )
2723, 26syl5eq 2496 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  D )  ->  Z  =  ( 0g `  (Scalar `  Q ) ) )
2827oveq1d 6296 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  D )  ->  ( Z  .*  [_ d  / 
k ]_ W )  =  ( ( 0g `  (Scalar `  Q ) )  .*  [_ d  / 
k ]_ W ) )
29 mptscmfsupp0.q . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  LMod )
3029adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  D )  ->  Q  e.  LMod )
31 mptscmfsupp0.w . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  D )  ->  W  e.  K )
3231ralrimiva 2857 . . . . . . . . . . . . 13  |-  ( ph  ->  A. k  e.  D  W  e.  K )
3332adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  D )  ->  A. k  e.  D  W  e.  K )
34 rspcsbela 3839 . . . . . . . . . . . 12  |-  ( ( d  e.  D  /\  A. k  e.  D  W  e.  K )  ->  [_ d  /  k ]_ W  e.  K )
3512, 33, 34syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  D )  ->  [_ d  /  k ]_ W  e.  K )
36 mptscmfsupp0.k . . . . . . . . . . . 12  |-  K  =  ( Base `  Q
)
37 eqid 2443 . . . . . . . . . . . 12  |-  (Scalar `  Q )  =  (Scalar `  Q )
38 mptscmfsupp0.m . . . . . . . . . . . 12  |-  .*  =  ( .s `  Q )
39 eqid 2443 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  Q )
)  =  ( 0g
`  (Scalar `  Q )
)
4036, 37, 38, 39, 6lmod0vs 17524 . . . . . . . . . . 11  |-  ( ( Q  e.  LMod  /\  [_ d  /  k ]_ W  e.  K )  ->  (
( 0g `  (Scalar `  Q ) )  .* 
[_ d  /  k ]_ W )  =  .0.  )
4130, 35, 40syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  D )  ->  (
( 0g `  (Scalar `  Q ) )  .* 
[_ d  /  k ]_ W )  =  .0.  )
4228, 41eqtrd 2484 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  D )  ->  ( Z  .*  [_ d  / 
k ]_ W )  =  .0.  )
4322, 42sylan9eqr 2506 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  D )  /\  [_ d  /  k ]_ S  =  Z )  ->  ( [_ d  /  k ]_ S  .*  [_ d  /  k ]_ W
)  =  .0.  )
44 csbov12g 6318 . . . . . . . . . . . . . 14  |-  ( d  e.  D  ->  [_ d  /  k ]_ ( S  .*  W )  =  ( [_ d  / 
k ]_ S  .*  [_ d  /  k ]_ W
) )
4544adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  D )  ->  [_ d  /  k ]_ ( S  .*  W )  =  ( [_ d  / 
k ]_ S  .*  [_ d  /  k ]_ W
) )
46 ovex 6309 . . . . . . . . . . . . 13  |-  ( [_ d  /  k ]_ S  .*  [_ d  /  k ]_ W )  e.  _V
4745, 46syl6eqel 2539 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  D )  ->  [_ d  /  k ]_ ( S  .*  W )  e. 
_V )
48 eqid 2443 . . . . . . . . . . . . 13  |-  ( k  e.  D  |->  ( S  .*  W ) )  =  ( k  e.  D  |->  ( S  .*  W ) )
4948fvmpts 5943 . . . . . . . . . . . 12  |-  ( ( d  e.  D  /\  [_ d  /  k ]_ ( S  .*  W
)  e.  _V )  ->  ( ( k  e.  D  |->  ( S  .*  W ) ) `  d )  =  [_ d  /  k ]_ ( S  .*  W ) )
5012, 47, 49syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  D )  ->  (
( k  e.  D  |->  ( S  .*  W
) ) `  d
)  =  [_ d  /  k ]_ ( S  .*  W ) )
5150, 45eqtrd 2484 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  D )  ->  (
( k  e.  D  |->  ( S  .*  W
) ) `  d
)  =  ( [_ d  /  k ]_ S  .*  [_ d  /  k ]_ W ) )
5251eqeq1d 2445 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  D )  ->  (
( ( k  e.  D  |->  ( S  .*  W ) ) `  d )  =  .0.  <->  (
[_ d  /  k ]_ S  .*  [_ d  /  k ]_ W
)  =  .0.  )
)
5352adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  D )  /\  [_ d  /  k ]_ S  =  Z )  ->  (
( ( k  e.  D  |->  ( S  .*  W ) ) `  d )  =  .0.  <->  (
[_ d  /  k ]_ S  .*  [_ d  /  k ]_ W
)  =  .0.  )
)
5443, 53mpbird 232 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  D )  /\  [_ d  /  k ]_ S  =  Z )  ->  (
( k  e.  D  |->  ( S  .*  W
) ) `  d
)  =  .0.  )
5554ex 434 . . . . . 6  |-  ( (
ph  /\  d  e.  D )  ->  ( [_ d  /  k ]_ S  =  Z  ->  ( ( k  e.  D  |->  ( S  .*  W ) ) `  d )  =  .0.  ) )
5621, 55sylbid 215 . . . . 5  |-  ( (
ph  /\  d  e.  D )  ->  (
( ( k  e.  D  |->  S ) `  d )  =  Z  ->  ( ( k  e.  D  |->  ( S  .*  W ) ) `
 d )  =  .0.  ) )
5756necon3d 2667 . . . 4  |-  ( (
ph  /\  d  e.  D )  ->  (
( ( k  e.  D  |->  ( S  .*  W ) ) `  d )  =/=  .0.  ->  ( ( k  e.  D  |->  S ) `  d )  =/=  Z
) )
5857ss2rabdv 3566 . . 3  |-  ( ph  ->  { d  e.  D  |  ( ( k  e.  D  |->  ( S  .*  W ) ) `
 d )  =/= 
.0.  }  C_  { d  e.  D  |  ( ( k  e.  D  |->  S ) `  d
)  =/=  Z }
)
59 ovex 6309 . . . . . 6  |-  ( S  .*  W )  e. 
_V
6059rgenw 2804 . . . . 5  |-  A. k  e.  D  ( S  .*  W )  e.  _V
6148fnmpt 5697 . . . . 5  |-  ( A. k  e.  D  ( S  .*  W )  e. 
_V  ->  ( k  e.  D  |->  ( S  .*  W ) )  Fn  D )
6260, 61mp1i 12 . . . 4  |-  ( ph  ->  ( k  e.  D  |->  ( S  .*  W
) )  Fn  D
)
63 suppvalfn 6910 . . . 4  |-  ( ( ( k  e.  D  |->  ( S  .*  W
) )  Fn  D  /\  D  e.  V  /\  .0.  e.  _V )  ->  ( ( k  e.  D  |->  ( S  .*  W ) ) supp  .0.  )  =  { d  e.  D  |  (
( k  e.  D  |->  ( S  .*  W
) ) `  d
)  =/=  .0.  }
)
6462, 1, 9, 63syl3anc 1229 . . 3  |-  ( ph  ->  ( ( k  e.  D  |->  ( S  .*  W ) ) supp  .0.  )  =  { d  e.  D  |  (
( k  e.  D  |->  ( S  .*  W
) ) `  d
)  =/=  .0.  }
)
6518fnmpt 5697 . . . . 5  |-  ( A. k  e.  D  S  e.  B  ->  ( k  e.  D  |->  S )  Fn  D )
6614, 65syl 16 . . . 4  |-  ( ph  ->  ( k  e.  D  |->  S )  Fn  D
)
67 fvex 5866 . . . . . 6  |-  ( 0g
`  R )  e. 
_V
6823, 67eqeltri 2527 . . . . 5  |-  Z  e. 
_V
6968a1i 11 . . . 4  |-  ( ph  ->  Z  e.  _V )
70 suppvalfn 6910 . . . 4  |-  ( ( ( k  e.  D  |->  S )  Fn  D  /\  D  e.  V  /\  Z  e.  _V )  ->  ( ( k  e.  D  |->  S ) supp 
Z )  =  {
d  e.  D  | 
( ( k  e.  D  |->  S ) `  d )  =/=  Z } )
7166, 1, 69, 70syl3anc 1229 . . 3  |-  ( ph  ->  ( ( k  e.  D  |->  S ) supp  Z
)  =  { d  e.  D  |  ( ( k  e.  D  |->  S ) `  d
)  =/=  Z }
)
7258, 64, 713sstr4d 3532 . 2  |-  ( ph  ->  ( ( k  e.  D  |->  ( S  .*  W ) ) supp  .0.  )  C_  ( ( k  e.  D  |->  S ) supp 
Z ) )
73 suppssfifsupp 7846 . 2  |-  ( ( ( ( k  e.  D  |->  ( S  .*  W ) )  e. 
_V  /\  Fun  ( k  e.  D  |->  ( S  .*  W ) )  /\  .0.  e.  _V )  /\  ( ( ( k  e.  D  |->  S ) supp  Z )  e. 
Fin  /\  ( (
k  e.  D  |->  ( S  .*  W ) ) supp  .0.  )  C_  ( ( k  e.  D  |->  S ) supp  Z
) ) )  -> 
( k  e.  D  |->  ( S  .*  W
) ) finSupp  .0.  )
743, 5, 9, 11, 72, 73syl32anc 1237 1  |-  ( ph  ->  ( k  e.  D  |->  ( S  .*  W
) ) finSupp  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   {crab 2797   _Vcvv 3095   [_csb 3420    C_ wss 3461   class class class wbr 4437    |-> cmpt 4495   Fun wfun 5572    Fn wfn 5573   ` cfv 5578  (class class class)co 6281   supp csupp 6903   Fincfn 7518   finSupp cfsupp 7831   Basecbs 14614  Scalarcsca 14682   .scvsca 14683   0gc0g 14819   LModclmod 17491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-supp 6904  df-er 7313  df-en 7519  df-fin 7522  df-fsupp 7832  df-0g 14821  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-grp 16036  df-ring 17179  df-lmod 17493
This theorem is referenced by:  mptscmfsuppd  17556  gsumsmonply1  18324  pm2mpcl  19276  mply1topmatcllem  19282  mp2pm2mplem5  19289  pm2mpghmlem2  19291  chcoeffeqlem  19364
  Copyright terms: Public domain W3C validator