Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptrel Structured version   Unicode version

Theorem mptrel 27713
Description: The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
mptrel  |-  Rel  (
x  e.  A  |->  B )

Proof of Theorem mptrel
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4450 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
21relopabi 5063 1  |-  Rel  (
x  e.  A  |->  B )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1758    |-> cmpt 4448   Rel wrel 4943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-opab 4449  df-mpt 4450  df-xp 4944  df-rel 4945
This theorem is referenced by:  dfbigcup2  28064  imageval  28095
  Copyright terms: Public domain W3C validator