MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptpreima Structured version   Visualization version   Unicode version

Theorem mptpreima 5335
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpt.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptpreima  |-  ( `' F " C )  =  { x  e.  A  |  B  e.  C }
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem mptpreima
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dmmpt.1 . . . . . 6  |-  F  =  ( x  e.  A  |->  B )
2 df-mpt 4456 . . . . . 6  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
31, 2eqtri 2493 . . . . 5  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
43cnveqi 5014 . . . 4  |-  `' F  =  `' { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
5 cnvopab 5243 . . . 4  |-  `' { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
64, 5eqtri 2493 . . 3  |-  `' F  =  { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }
76imaeq1i 5171 . 2  |-  ( `' F " C )  =  ( { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) } " C )
8 df-ima 4852 . . 3  |-  ( {
<. y ,  x >.  |  ( x  e.  A  /\  y  =  B
) } " C
)  =  ran  ( { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }  |`  C )
9 resopab 5157 . . . . 5  |-  ( {
<. y ,  x >.  |  ( x  e.  A  /\  y  =  B
) }  |`  C )  =  { <. y ,  x >.  |  (
y  e.  C  /\  ( x  e.  A  /\  y  =  B
) ) }
109rneqi 5067 . . . 4  |-  ran  ( { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }  |`  C )  =  ran  { <. y ,  x >.  |  ( y  e.  C  /\  ( x  e.  A  /\  y  =  B
) ) }
11 ancom 457 . . . . . . . . 9  |-  ( ( y  e.  C  /\  ( x  e.  A  /\  y  =  B
) )  <->  ( (
x  e.  A  /\  y  =  B )  /\  y  e.  C
) )
12 anass 661 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  =  B
)  /\  y  e.  C )  <->  ( x  e.  A  /\  (
y  =  B  /\  y  e.  C )
) )
1311, 12bitri 257 . . . . . . . 8  |-  ( ( y  e.  C  /\  ( x  e.  A  /\  y  =  B
) )  <->  ( x  e.  A  /\  (
y  =  B  /\  y  e.  C )
) )
1413exbii 1726 . . . . . . 7  |-  ( E. y ( y  e.  C  /\  ( x  e.  A  /\  y  =  B ) )  <->  E. y
( x  e.  A  /\  ( y  =  B  /\  y  e.  C
) ) )
15 19.42v 1842 . . . . . . . 8  |-  ( E. y ( x  e.  A  /\  ( y  =  B  /\  y  e.  C ) )  <->  ( x  e.  A  /\  E. y
( y  =  B  /\  y  e.  C
) ) )
16 df-clel 2467 . . . . . . . . . 10  |-  ( B  e.  C  <->  E. y
( y  =  B  /\  y  e.  C
) )
1716bicomi 207 . . . . . . . . 9  |-  ( E. y ( y  =  B  /\  y  e.  C )  <->  B  e.  C )
1817anbi2i 708 . . . . . . . 8  |-  ( ( x  e.  A  /\  E. y ( y  =  B  /\  y  e.  C ) )  <->  ( x  e.  A  /\  B  e.  C ) )
1915, 18bitri 257 . . . . . . 7  |-  ( E. y ( x  e.  A  /\  ( y  =  B  /\  y  e.  C ) )  <->  ( x  e.  A  /\  B  e.  C ) )
2014, 19bitri 257 . . . . . 6  |-  ( E. y ( y  e.  C  /\  ( x  e.  A  /\  y  =  B ) )  <->  ( x  e.  A  /\  B  e.  C ) )
2120abbii 2587 . . . . 5  |-  { x  |  E. y ( y  e.  C  /\  (
x  e.  A  /\  y  =  B )
) }  =  {
x  |  ( x  e.  A  /\  B  e.  C ) }
22 rnopab 5085 . . . . 5  |-  ran  { <. y ,  x >.  |  ( y  e.  C  /\  ( x  e.  A  /\  y  =  B
) ) }  =  { x  |  E. y ( y  e.  C  /\  ( x  e.  A  /\  y  =  B ) ) }
23 df-rab 2765 . . . . 5  |-  { x  e.  A  |  B  e.  C }  =  {
x  |  ( x  e.  A  /\  B  e.  C ) }
2421, 22, 233eqtr4i 2503 . . . 4  |-  ran  { <. y ,  x >.  |  ( y  e.  C  /\  ( x  e.  A  /\  y  =  B
) ) }  =  { x  e.  A  |  B  e.  C }
2510, 24eqtri 2493 . . 3  |-  ran  ( { <. y ,  x >.  |  ( x  e.  A  /\  y  =  B ) }  |`  C )  =  { x  e.  A  |  B  e.  C }
268, 25eqtri 2493 . 2  |-  ( {
<. y ,  x >.  |  ( x  e.  A  /\  y  =  B
) } " C
)  =  { x  e.  A  |  B  e.  C }
277, 26eqtri 2493 1  |-  ( `' F " C )  =  { x  e.  A  |  B  e.  C }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457   {crab 2760   {copab 4453    |-> cmpt 4454   `'ccnv 4838   ran crn 4840    |` cres 4841   "cima 4842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-mpt 4456  df-xp 4845  df-rel 4846  df-cnv 4847  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852
This theorem is referenced by:  mptiniseg  5336  dmmpt  5337  fmpt  6058  f1oresrab  6071  mptsuppdifd  6956  r0weon  8461  compss  8824  infrenegsup  10613  infmsupOLD  10614  eqglact  16946  odngen  17304  psrbagsn  18795  coe1mul2lem2  18938  pjdm  19347  xkoccn  20711  txcnmpt  20716  txdis1cn  20727  pthaus  20730  txkgen  20744  xkoco1cn  20749  xkoco2cn  20750  xkoinjcn  20779  txcon  20781  imasnopn  20782  imasncld  20783  imasncls  20784  ptcmplem1  21145  ptcmplem3  21147  ptcmplem4  21148  tmdgsum2  21189  symgtgp  21194  tgpconcompeqg  21204  ghmcnp  21207  tgpt0  21211  qustgpopn  21212  qustgphaus  21215  eltsms  21225  prdsxmslem2  21622  efopn  23682  atansopn  23937  xrlimcnp  23973  suppss2fOLD  28313  fpwrelmapffslem  28392  ptrest  32003  mbfposadd  32052  cnambfre  32053  itg2addnclem2  32058  iblabsnclem  32069  ftc1anclem1  32081  ftc1anclem6  32086  pwfi2f1o  36025
  Copyright terms: Public domain W3C validator