MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppr Structured version   Visualization version   Unicode version

Theorem mptnn0fsuppr 12242
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0  |-  ( ph  ->  .0.  e.  V )
mptnn0fsupp.c  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  B )
mptnn0fsuppr.s  |-  ( ph  ->  ( k  e.  NN0  |->  C ) finSupp  .0.  )
Assertion
Ref Expression
mptnn0fsuppr  |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
)
Distinct variable groups:    B, k    C, s, x    ph, k,
s, x    .0. , s, x
Allowed substitution hints:    B( x, s)    C( k)    V( x, k, s)    .0. ( k)

Proof of Theorem mptnn0fsuppr
StepHypRef Expression
1 mptnn0fsuppr.s . . 3  |-  ( ph  ->  ( k  e.  NN0  |->  C ) finSupp  .0.  )
2 fsuppimp 7914 . . . 4  |-  ( ( k  e.  NN0  |->  C ) finSupp  .0.  ->  ( Fun  (
k  e.  NN0  |->  C )  /\  ( ( k  e.  NN0  |->  C ) supp 
.0.  )  e.  Fin ) )
3 mptnn0fsupp.c . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  B )
43ralrimiva 2813 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  NN0  C  e.  B )
5 eqid 2461 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  |->  C )  =  ( k  e. 
NN0  |->  C )
65fnmpt 5725 . . . . . . . . . . . . . 14  |-  ( A. k  e.  NN0  C  e.  B  ->  ( k  e.  NN0  |->  C )  Fn 
NN0 )
74, 6syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  NN0  |->  C )  Fn  NN0 )
8 nn0ex 10903 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
98a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  e.  _V )
10 mptnn0fsupp.0 . . . . . . . . . . . . . 14  |-  ( ph  ->  .0.  e.  V )
11 elex 3065 . . . . . . . . . . . . . 14  |-  (  .0. 
e.  V  ->  .0.  e.  _V )
1210, 11syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  .0.  e.  _V )
137, 9, 123jca 1194 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( k  e. 
NN0  |->  C )  Fn 
NN0  /\  NN0  e.  _V  /\  .0.  e.  _V )
)
1413adantr 471 . . . . . . . . . . 11  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C )  Fn  NN0  /\  NN0  e.  _V  /\  .0.  e.  _V ) )
15 suppvalfn 6947 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN0  |->  C )  Fn  NN0  /\ 
NN0  e.  _V  /\  .0.  e.  _V )  ->  (
( k  e.  NN0  |->  C ) supp  .0.  )  =  { x  e.  NN0  |  ( ( k  e. 
NN0  |->  C ) `  x )  =/=  .0.  } )
1614, 15syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C ) supp 
.0.  )  =  {
x  e.  NN0  | 
( ( k  e. 
NN0  |->  C ) `  x )  =/=  .0.  } )
17 simpr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  x  e.  NN0 )
184adantr 471 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  A. k  e.  NN0  C  e.  B
)
1918adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  A. k  e.  NN0  C  e.  B )
20 rspcsbela 3806 . . . . . . . . . . . . . 14  |-  ( ( x  e.  NN0  /\  A. k  e.  NN0  C  e.  B )  ->  [_ x  /  k ]_ C  e.  B )
2117, 19, 20syl2anc 671 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  [_ x  /  k ]_ C  e.  B
)
225fvmpts 5973 . . . . . . . . . . . . 13  |-  ( ( x  e.  NN0  /\  [_ x  /  k ]_ C  e.  B )  ->  ( ( k  e. 
NN0  |->  C ) `  x )  =  [_ x  /  k ]_ C
)
2317, 21, 22syl2anc 671 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  -> 
( ( k  e. 
NN0  |->  C ) `  x )  =  [_ x  /  k ]_ C
)
2423neeq1d 2694 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  -> 
( ( ( k  e.  NN0  |->  C ) `
 x )  =/= 
.0. 
<-> 
[_ x  /  k ]_ C  =/=  .0.  ) )
2524rabbidva 3046 . . . . . . . . . 10  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  { x  e.  NN0  |  ( ( k  e.  NN0  |->  C ) `
 x )  =/= 
.0.  }  =  {
x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  } )
2616, 25eqtrd 2495 . . . . . . . . 9  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C ) supp 
.0.  )  =  {
x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  } )
2726eleq1d 2523 . . . . . . . 8  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
( k  e.  NN0  |->  C ) supp  .0.  )  e.  Fin  <->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
2827biimpd 212 . . . . . . 7  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
( k  e.  NN0  |->  C ) supp  .0.  )  e.  Fin  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
2928expcom 441 . . . . . 6  |-  ( Fun  ( k  e.  NN0  |->  C )  ->  ( ph  ->  ( ( ( k  e.  NN0  |->  C ) supp 
.0.  )  e.  Fin  ->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) ) )
3029com23 81 . . . . 5  |-  ( Fun  ( k  e.  NN0  |->  C )  ->  (
( ( k  e. 
NN0  |->  C ) supp  .0.  )  e.  Fin  ->  ( ph  ->  { x  e. 
NN0  |  [_ x  / 
k ]_ C  =/=  .0.  }  e.  Fin ) ) )
3130imp 435 . . . 4  |-  ( ( Fun  ( k  e. 
NN0  |->  C )  /\  ( ( k  e. 
NN0  |->  C ) supp  .0.  )  e.  Fin )  ->  ( ph  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
322, 31syl 17 . . 3  |-  ( ( k  e.  NN0  |->  C ) finSupp  .0.  ->  ( ph  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
331, 32mpcom 37 . 2  |-  ( ph  ->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin )
34 rabssnn0fi 12229 . . 3  |-  ( { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  ) )
35 nne 2638 . . . . . 6  |-  ( -. 
[_ x  /  k ]_ C  =/=  .0.  <->  [_ x  /  k ]_ C  =  .0.  )
3635imbi2i 318 . . . . 5  |-  ( ( s  <  x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  ) 
<->  ( s  <  x  ->  [_ x  /  k ]_ C  =  .0.  ) )
3736ralbii 2830 . . . 4  |-  ( A. x  e.  NN0  ( s  <  x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  )  <->  A. x  e.  NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
3837rexbii 2900 . . 3  |-  ( E. s  e.  NN0  A. x  e.  NN0  ( s  < 
x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  )  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
3934, 38bitri 257 . 2  |-  ( { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
4033, 39sylib 201 1  |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897    =/= wne 2632   A.wral 2748   E.wrex 2749   {crab 2752   _Vcvv 3056   [_csb 3374   class class class wbr 4415    |-> cmpt 4474   Fun wfun 5594    Fn wfn 5595   ` cfv 5600  (class class class)co 6314   supp csupp 6940   Fincfn 7594   finSupp cfsupp 7908    < clt 9700   NN0cn0 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-fal 1460  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-1st 6819  df-2nd 6820  df-supp 6941  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-er 7388  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-fsupp 7909  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-nn 10637  df-n0 10898  df-z 10966  df-uz 11188  df-fz 11813
This theorem is referenced by:  cpmidpmatlem3  19944
  Copyright terms: Public domain W3C validator