MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptnn0fsuppr Structured version   Unicode version

Theorem mptnn0fsuppr 12090
Description: A finitely supported mapping from the nonnegative integers fulfills certain conditions. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptnn0fsupp.0  |-  ( ph  ->  .0.  e.  V )
mptnn0fsupp.c  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  B )
mptnn0fsuppr.s  |-  ( ph  ->  ( k  e.  NN0  |->  C ) finSupp  .0.  )
Assertion
Ref Expression
mptnn0fsuppr  |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
)
Distinct variable groups:    B, k    C, s, x    ph, k,
s, x    .0. , s, x
Allowed substitution hints:    B( x, s)    C( k)    V( x, k, s)    .0. ( k)

Proof of Theorem mptnn0fsuppr
StepHypRef Expression
1 mptnn0fsuppr.s . . 3  |-  ( ph  ->  ( k  e.  NN0  |->  C ) finSupp  .0.  )
2 fsuppimp 7827 . . . 4  |-  ( ( k  e.  NN0  |->  C ) finSupp  .0.  ->  ( Fun  (
k  e.  NN0  |->  C )  /\  ( ( k  e.  NN0  |->  C ) supp 
.0.  )  e.  Fin ) )
3 mptnn0fsupp.c . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  B )
43ralrimiva 2868 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  NN0  C  e.  B )
5 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  |->  C )  =  ( k  e. 
NN0  |->  C )
65fnmpt 5689 . . . . . . . . . . . . . 14  |-  ( A. k  e.  NN0  C  e.  B  ->  ( k  e.  NN0  |->  C )  Fn 
NN0 )
74, 6syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  NN0  |->  C )  Fn  NN0 )
8 nn0ex 10797 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
98a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  e.  _V )
10 mptnn0fsupp.0 . . . . . . . . . . . . . 14  |-  ( ph  ->  .0.  e.  V )
11 elex 3115 . . . . . . . . . . . . . 14  |-  (  .0. 
e.  V  ->  .0.  e.  _V )
1210, 11syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  .0.  e.  _V )
137, 9, 123jca 1174 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( k  e. 
NN0  |->  C )  Fn 
NN0  /\  NN0  e.  _V  /\  .0.  e.  _V )
)
1413adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C )  Fn  NN0  /\  NN0  e.  _V  /\  .0.  e.  _V ) )
15 suppvalfn 6898 . . . . . . . . . . 11  |-  ( ( ( k  e.  NN0  |->  C )  Fn  NN0  /\ 
NN0  e.  _V  /\  .0.  e.  _V )  ->  (
( k  e.  NN0  |->  C ) supp  .0.  )  =  { x  e.  NN0  |  ( ( k  e. 
NN0  |->  C ) `  x )  =/=  .0.  } )
1614, 15syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C ) supp 
.0.  )  =  {
x  e.  NN0  | 
( ( k  e. 
NN0  |->  C ) `  x )  =/=  .0.  } )
17 simpr 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  x  e.  NN0 )
184adantr 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  A. k  e.  NN0  C  e.  B
)
1918adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  A. k  e.  NN0  C  e.  B )
20 rspcsbela 3845 . . . . . . . . . . . . . 14  |-  ( ( x  e.  NN0  /\  A. k  e.  NN0  C  e.  B )  ->  [_ x  /  k ]_ C  e.  B )
2117, 19, 20syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  ->  [_ x  /  k ]_ C  e.  B
)
225fvmpts 5933 . . . . . . . . . . . . 13  |-  ( ( x  e.  NN0  /\  [_ x  /  k ]_ C  e.  B )  ->  ( ( k  e. 
NN0  |->  C ) `  x )  =  [_ x  /  k ]_ C
)
2317, 21, 22syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  -> 
( ( k  e. 
NN0  |->  C ) `  x )  =  [_ x  /  k ]_ C
)
2423neeq1d 2731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Fun  ( k  e.  NN0  |->  C ) )  /\  x  e.  NN0 )  -> 
( ( ( k  e.  NN0  |->  C ) `
 x )  =/= 
.0. 
<-> 
[_ x  /  k ]_ C  =/=  .0.  ) )
2524rabbidva 3097 . . . . . . . . . 10  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  { x  e.  NN0  |  ( ( k  e.  NN0  |->  C ) `
 x )  =/= 
.0.  }  =  {
x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  } )
2616, 25eqtrd 2495 . . . . . . . . 9  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
k  e.  NN0  |->  C ) supp 
.0.  )  =  {
x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  } )
2726eleq1d 2523 . . . . . . . 8  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
( k  e.  NN0  |->  C ) supp  .0.  )  e.  Fin  <->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
2827biimpd 207 . . . . . . 7  |-  ( (
ph  /\  Fun  ( k  e.  NN0  |->  C ) )  ->  ( (
( k  e.  NN0  |->  C ) supp  .0.  )  e.  Fin  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
2928expcom 433 . . . . . 6  |-  ( Fun  ( k  e.  NN0  |->  C )  ->  ( ph  ->  ( ( ( k  e.  NN0  |->  C ) supp 
.0.  )  e.  Fin  ->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) ) )
3029com23 78 . . . . 5  |-  ( Fun  ( k  e.  NN0  |->  C )  ->  (
( ( k  e. 
NN0  |->  C ) supp  .0.  )  e.  Fin  ->  ( ph  ->  { x  e. 
NN0  |  [_ x  / 
k ]_ C  =/=  .0.  }  e.  Fin ) ) )
3130imp 427 . . . 4  |-  ( ( Fun  ( k  e. 
NN0  |->  C )  /\  ( ( k  e. 
NN0  |->  C ) supp  .0.  )  e.  Fin )  ->  ( ph  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
322, 31syl 16 . . 3  |-  ( ( k  e.  NN0  |->  C ) finSupp  .0.  ->  ( ph  ->  { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin ) )
331, 32mpcom 36 . 2  |-  ( ph  ->  { x  e.  NN0  | 
[_ x  /  k ]_ C  =/=  .0.  }  e.  Fin )
34 rabssnn0fi 12080 . . 3  |-  ( { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  ) )
35 nne 2655 . . . . . 6  |-  ( -. 
[_ x  /  k ]_ C  =/=  .0.  <->  [_ x  /  k ]_ C  =  .0.  )
3635imbi2i 310 . . . . 5  |-  ( ( s  <  x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  ) 
<->  ( s  <  x  ->  [_ x  /  k ]_ C  =  .0.  ) )
3736ralbii 2885 . . . 4  |-  ( A. x  e.  NN0  ( s  <  x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  )  <->  A. x  e.  NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
3837rexbii 2956 . . 3  |-  ( E. s  e.  NN0  A. x  e.  NN0  ( s  < 
x  ->  -.  [_ x  /  k ]_ C  =/=  .0.  )  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
3934, 38bitri 249 . 2  |-  ( { x  e.  NN0  |  [_ x  /  k ]_ C  =/=  .0.  }  e.  Fin  <->  E. s  e.  NN0  A. x  e. 
NN0  ( s  < 
x  ->  [_ x  / 
k ]_ C  =  .0.  ) )
4033, 39sylib 196 1  |-  ( ph  ->  E. s  e.  NN0  A. x  e.  NN0  (
s  <  x  ->  [_ x  /  k ]_ C  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106   [_csb 3420   class class class wbr 4439    |-> cmpt 4497   Fun wfun 5564    Fn wfn 5565   ` cfv 5570  (class class class)co 6270   supp csupp 6891   Fincfn 7509   finSupp cfsupp 7821    < clt 9617   NN0cn0 10791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676
This theorem is referenced by:  cpmidpmatlem3  19543
  Copyright terms: Public domain W3C validator