MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteqb Structured version   Unicode version

Theorem mpteqb 5971
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5982. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 3087 . . 3  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2816 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 fneq1 5673 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( x  e.  A  |->  B )  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
4 eqid 2420 . . . . . . . 8  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5712 . . . . . . 7  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
6 eqid 2420 . . . . . . . 8  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
76mptfng 5712 . . . . . . 7  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
83, 5, 73bitr4g 291 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V 
<-> 
A. x  e.  A  C  e.  _V )
)
98biimpd 210 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  C  e.  _V )
)
10 r19.26 2953 . . . . . . 7  |-  ( A. x  e.  A  ( B  e.  _V  /\  C  e.  _V )  <->  ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V ) )
11 nfmpt1 4506 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
12 nfmpt1 4506 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  C )
1311, 12nfeq 2593 . . . . . . . . 9  |-  F/ x
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
14 simpll 758 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
1514fveq1d 5874 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  ( ( x  e.  A  |->  C ) `  x
) )
164fvmpt2 5964 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
1716ad2ant2lr 752 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
186fvmpt2 5964 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  C  e.  _V )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
1918ad2ant2l 750 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  C ) `  x )  =  C )
2015, 17, 193eqtr3d 2469 . . . . . . . . . 10  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  ->  B  =  C )
2120exp31 607 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( x  e.  A  ->  ( ( B  e.  _V  /\  C  e.  _V )  ->  B  =  C ) ) )
2213, 21ralrimi 2823 . . . . . . . 8  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  ( ( B  e. 
_V  /\  C  e.  _V )  ->  B  =  C ) )
23 ralim 2812 . . . . . . . 8  |-  ( A. x  e.  A  (
( B  e.  _V  /\  C  e.  _V )  ->  B  =  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2422, 23syl 17 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2510, 24syl5bir 221 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V )  ->  A. x  e.  A  B  =  C ) )
2625expd 437 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  ( A. x  e.  A  C  e.  _V  ->  A. x  e.  A  B  =  C )
) )
279, 26mpdd 41 . . . 4  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  B  =  C )
)
2827com12 32 . . 3  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  B  =  C )
)
29 eqid 2420 . . . 4  |-  A  =  A
30 mpteq12 4496 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3129, 30mpan 674 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3228, 31impbid1 206 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
332, 32syl 17 1  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867   A.wral 2773   _Vcvv 3078    |-> cmpt 4475    Fn wfn 5587   ` cfv 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-fv 5600
This theorem is referenced by:  eqfnfv  5982  eufnfv  6145  offveqb  6558  ramcl  14939  fucsect  15821  setcepi  15927  0frgp  17357  dprdf11  17584  dpjeq  17620  mvrf1  18577  mplmonmul  18616  frgpcyg  19068  ustuqtop  21185  mdegle0  22920  ply1nzb  22965  cvmliftphtlem  29854
  Copyright terms: Public domain W3C validator