MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelee Structured version   Unicode version

Theorem mptelee 23874
Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
mptelee  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( A F B )  e.  RR ) )
Distinct variable group:    k, N
Allowed substitution hints:    A( k)    B( k)    F( k)

Proof of Theorem mptelee
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elee 23873 . 2  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  e.  ( EE `  N )  <-> 
( k  e.  ( 1 ... N ) 
|->  ( A F B ) ) : ( 1 ... N ) --> RR ) )
2 ovex 6307 . . . . 5  |-  ( A F B )  e. 
_V
3 eqid 2467 . . . . 5  |-  ( k  e.  ( 1 ... N )  |->  ( A F B ) )  =  ( k  e.  ( 1 ... N
)  |->  ( A F B ) )
42, 3fnmpti 5707 . . . 4  |-  ( k  e.  ( 1 ... N )  |->  ( A F B ) )  Fn  ( 1 ... N )
5 df-f 5590 . . . 4  |-  ( ( k  e.  ( 1 ... N )  |->  ( A F B ) ) : ( 1 ... N ) --> RR  <->  ( ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  Fn  (
1 ... N )  /\  ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR ) )
64, 5mpbiran 916 . . 3  |-  ( ( k  e.  ( 1 ... N )  |->  ( A F B ) ) : ( 1 ... N ) --> RR  <->  ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR )
73rnmpt 5246 . . . . 5  |-  ran  (
k  e.  ( 1 ... N )  |->  ( A F B ) )  =  { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }
87sseq1i 3528 . . . 4  |-  ( ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR  <->  { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }  C_  RR )
9 abss 3569 . . . . 5  |-  ( { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }  C_  RR  <->  A. a
( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) )
10 nfre1 2925 . . . . . . . . 9  |-  F/ k E. k  e.  ( 1 ... N ) a  =  ( A F B )
11 nfv 1683 . . . . . . . . 9  |-  F/ k  a  e.  RR
1210, 11nfim 1867 . . . . . . . 8  |-  F/ k ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR )
1312nfal 1894 . . . . . . 7  |-  F/ k A. a ( E. k  e.  ( 1 ... N ) a  =  ( A F B )  ->  a  e.  RR )
14 r19.23v 2943 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) ( a  =  ( A F B )  -> 
a  e.  RR )  <-> 
( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) )
1514albii 1620 . . . . . . . 8  |-  ( A. a A. k  e.  ( 1 ... N ) ( a  =  ( A F B )  ->  a  e.  RR ) 
<-> 
A. a ( E. k  e.  ( 1 ... N ) a  =  ( A F B )  ->  a  e.  RR ) )
16 ralcom4 3132 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) A. a ( a  =  ( A F B )  ->  a  e.  RR )  <->  A. a A. k  e.  ( 1 ... N
) ( a  =  ( A F B )  ->  a  e.  RR ) )
17 rsp 2830 . . . . . . . . . 10  |-  ( A. k  e.  ( 1 ... N ) A. a ( a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N )  ->  A. a
( a  =  ( A F B )  ->  a  e.  RR ) ) )
182clel2 3240 . . . . . . . . . 10  |-  ( ( A F B )  e.  RR  <->  A. a
( a  =  ( A F B )  ->  a  e.  RR ) )
1917, 18syl6ibr 227 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) A. a ( a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N )  ->  ( A F B )  e.  RR ) )
2016, 19sylbir 213 . . . . . . . 8  |-  ( A. a A. k  e.  ( 1 ... N ) ( a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N
)  ->  ( A F B )  e.  RR ) )
2115, 20sylbir 213 . . . . . . 7  |-  ( A. a ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N
)  ->  ( A F B )  e.  RR ) )
2213, 21ralrimi 2864 . . . . . 6  |-  ( A. a ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR )  ->  A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
23 nfra1 2845 . . . . . . . 8  |-  F/ k A. k  e.  ( 1 ... N ) ( A F B )  e.  RR
24 rsp 2830 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  (
k  e.  ( 1 ... N )  -> 
( A F B )  e.  RR ) )
25 eleq1a 2550 . . . . . . . . 9  |-  ( ( A F B )  e.  RR  ->  (
a  =  ( A F B )  -> 
a  e.  RR ) )
2624, 25syl6 33 . . . . . . . 8  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  (
k  e.  ( 1 ... N )  -> 
( a  =  ( A F B )  ->  a  e.  RR ) ) )
2723, 11, 26rexlimd 2947 . . . . . . 7  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  ( E. k  e.  (
1 ... N ) a  =  ( A F B )  ->  a  e.  RR ) )
2827alrimiv 1695 . . . . . 6  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  A. a
( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) )
2922, 28impbii 188 . . . . 5  |-  ( A. a ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) 
<-> 
A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
309, 29bitri 249 . . . 4  |-  ( { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }  C_  RR  <->  A. k  e.  ( 1 ... N
) ( A F B )  e.  RR )
318, 30bitri 249 . . 3  |-  ( ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR  <->  A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
326, 31bitri 249 . 2  |-  ( ( k  e.  ( 1 ... N )  |->  ( A F B ) ) : ( 1 ... N ) --> RR  <->  A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
331, 32syl6bb 261 1  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( A F B )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1377    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815    C_ wss 3476    |-> cmpt 4505   ran crn 5000    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   RRcr 9487   1c1 9489   NNcn 10532   ...cfz 11668   EEcee 23867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-ee 23870
This theorem is referenced by:  eleesub  23890  eleesubd  23891  axsegconlem1  23896  axsegconlem8  23903  axpasch  23920  axeuclidlem  23941  axcontlem2  23944
  Copyright terms: Public domain W3C validator