MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelee Structured version   Unicode version

Theorem mptelee 24324
Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
mptelee  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( A F B )  e.  RR ) )
Distinct variable group:    k, N
Allowed substitution hints:    A( k)    B( k)    F( k)

Proof of Theorem mptelee
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elee 24323 . 2  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  e.  ( EE `  N )  <-> 
( k  e.  ( 1 ... N ) 
|->  ( A F B ) ) : ( 1 ... N ) --> RR ) )
2 ovex 6324 . . . . 5  |-  ( A F B )  e. 
_V
3 eqid 2457 . . . . 5  |-  ( k  e.  ( 1 ... N )  |->  ( A F B ) )  =  ( k  e.  ( 1 ... N
)  |->  ( A F B ) )
42, 3fnmpti 5715 . . . 4  |-  ( k  e.  ( 1 ... N )  |->  ( A F B ) )  Fn  ( 1 ... N )
5 df-f 5598 . . . 4  |-  ( ( k  e.  ( 1 ... N )  |->  ( A F B ) ) : ( 1 ... N ) --> RR  <->  ( ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  Fn  (
1 ... N )  /\  ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR ) )
64, 5mpbiran 918 . . 3  |-  ( ( k  e.  ( 1 ... N )  |->  ( A F B ) ) : ( 1 ... N ) --> RR  <->  ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR )
73rnmpt 5258 . . . . 5  |-  ran  (
k  e.  ( 1 ... N )  |->  ( A F B ) )  =  { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }
87sseq1i 3523 . . . 4  |-  ( ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR  <->  { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }  C_  RR )
9 abss 3565 . . . . 5  |-  ( { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }  C_  RR  <->  A. a
( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) )
10 nfre1 2918 . . . . . . . . 9  |-  F/ k E. k  e.  ( 1 ... N ) a  =  ( A F B )
11 nfv 1708 . . . . . . . . 9  |-  F/ k  a  e.  RR
1210, 11nfim 1921 . . . . . . . 8  |-  F/ k ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR )
1312nfal 1948 . . . . . . 7  |-  F/ k A. a ( E. k  e.  ( 1 ... N ) a  =  ( A F B )  ->  a  e.  RR )
14 r19.23v 2937 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) ( a  =  ( A F B )  -> 
a  e.  RR )  <-> 
( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) )
1514albii 1641 . . . . . . . 8  |-  ( A. a A. k  e.  ( 1 ... N ) ( a  =  ( A F B )  ->  a  e.  RR ) 
<-> 
A. a ( E. k  e.  ( 1 ... N ) a  =  ( A F B )  ->  a  e.  RR ) )
16 ralcom4 3128 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) A. a ( a  =  ( A F B )  ->  a  e.  RR )  <->  A. a A. k  e.  ( 1 ... N
) ( a  =  ( A F B )  ->  a  e.  RR ) )
17 rsp 2823 . . . . . . . . . 10  |-  ( A. k  e.  ( 1 ... N ) A. a ( a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N )  ->  A. a
( a  =  ( A F B )  ->  a  e.  RR ) ) )
182clel2 3236 . . . . . . . . . 10  |-  ( ( A F B )  e.  RR  <->  A. a
( a  =  ( A F B )  ->  a  e.  RR ) )
1917, 18syl6ibr 227 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) A. a ( a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N )  ->  ( A F B )  e.  RR ) )
2016, 19sylbir 213 . . . . . . . 8  |-  ( A. a A. k  e.  ( 1 ... N ) ( a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N
)  ->  ( A F B )  e.  RR ) )
2115, 20sylbir 213 . . . . . . 7  |-  ( A. a ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR )  ->  ( k  e.  ( 1 ... N
)  ->  ( A F B )  e.  RR ) )
2213, 21ralrimi 2857 . . . . . 6  |-  ( A. a ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR )  ->  A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
23 nfra1 2838 . . . . . . . 8  |-  F/ k A. k  e.  ( 1 ... N ) ( A F B )  e.  RR
24 rsp 2823 . . . . . . . . 9  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  (
k  e.  ( 1 ... N )  -> 
( A F B )  e.  RR ) )
25 eleq1a 2540 . . . . . . . . 9  |-  ( ( A F B )  e.  RR  ->  (
a  =  ( A F B )  -> 
a  e.  RR ) )
2624, 25syl6 33 . . . . . . . 8  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  (
k  e.  ( 1 ... N )  -> 
( a  =  ( A F B )  ->  a  e.  RR ) ) )
2723, 11, 26rexlimd 2941 . . . . . . 7  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  ( E. k  e.  (
1 ... N ) a  =  ( A F B )  ->  a  e.  RR ) )
2827alrimiv 1720 . . . . . 6  |-  ( A. k  e.  ( 1 ... N ) ( A F B )  e.  RR  ->  A. a
( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) )
2922, 28impbii 188 . . . . 5  |-  ( A. a ( E. k  e.  ( 1 ... N
) a  =  ( A F B )  ->  a  e.  RR ) 
<-> 
A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
309, 29bitri 249 . . . 4  |-  ( { a  |  E. k  e.  ( 1 ... N
) a  =  ( A F B ) }  C_  RR  <->  A. k  e.  ( 1 ... N
) ( A F B )  e.  RR )
318, 30bitri 249 . . 3  |-  ( ran  ( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  C_  RR  <->  A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
326, 31bitri 249 . 2  |-  ( ( k  e.  ( 1 ... N )  |->  ( A F B ) ) : ( 1 ... N ) --> RR  <->  A. k  e.  ( 1 ... N ) ( A F B )  e.  RR )
331, 32syl6bb 261 1  |-  ( N  e.  NN  ->  (
( k  e.  ( 1 ... N ) 
|->  ( A F B ) )  e.  ( EE `  N )  <->  A. k  e.  (
1 ... N ) ( A F B )  e.  RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1393    = wceq 1395    e. wcel 1819   {cab 2442   A.wral 2807   E.wrex 2808    C_ wss 3471    |-> cmpt 4515   ran crn 5009    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296   RRcr 9508   1c1 9510   NNcn 10556   ...cfz 11697   EEcee 24317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-map 7440  df-ee 24320
This theorem is referenced by:  eleesub  24340  eleesubd  24341  axsegconlem1  24346  axsegconlem8  24353  axpasch  24370  axeuclidlem  24391  axcontlem2  24394
  Copyright terms: Public domain W3C validator