MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2xopovel Structured version   Unicode version

Theorem mpt2xopovel 6948
Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017.)
Hypothesis
Ref Expression
mpt2xopoveq.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
Assertion
Ref Expression
mpt2xopovel  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Distinct variable groups:    n, K, x, y    n, V, x, y    n, W, x, y    n, X, x, y    n, Y, x, y    x, N, y
Allowed substitution hints:    ph( x, y, n)    F( x, y, n)    N( n)

Proof of Theorem mpt2xopovel
StepHypRef Expression
1 mpt2xopoveq.f . . . 4  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  { n  e.  ( 1st `  x )  |  ph } )
21mpt2xopn0yelv 6941 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
32pm4.71rd 635 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) ) ) )
41mpt2xopoveq 6947 . . . . . 6  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( <. V ,  W >. F K )  =  {
n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }
)
54eleq2d 2537 . . . . 5  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph } ) )
6 nfcv 2629 . . . . . . 7  |-  F/_ n V
76elrabsf 3370 . . . . . 6  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph ) )
8 sbccom 3411 . . . . . . . 8  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph )
9 sbccom 3411 . . . . . . . . 9  |-  ( [. N  /  n ]. [. K  /  y ]. ph  <->  [. K  / 
y ]. [. N  /  n ]. ph )
109sbcbii 3391 . . . . . . . 8  |-  ( [. <. V ,  W >.  /  x ]. [. N  /  n ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
118, 10bitri 249 . . . . . . 7  |-  ( [. N  /  n ]. [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph  <->  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
1211anbi2i 694 . . . . . 6  |-  ( ( N  e.  V  /\  [. N  /  n ]. [.
<. V ,  W >.  /  x ]. [. K  /  y ]. ph )  <->  ( N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
)
137, 12bitri 249 . . . . 5  |-  ( N  e.  { n  e.  V  |  [. <. V ,  W >.  /  x ]. [. K  /  y ]. ph }  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) )
145, 13syl6bb 261 . . . 4  |-  ( ( ( V  e.  X  /\  W  e.  Y
)  /\  K  e.  V )  ->  ( N  e.  ( <. V ,  W >. F K )  <->  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
1514pm5.32da 641 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) ) )
16 3anass 977 . . 3  |-  ( ( K  e.  V  /\  N  e.  V  /\  [.
<. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )  <->  ( K  e.  V  /\  ( N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
1715, 16syl6bbr 263 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( ( K  e.  V  /\  N  e.  ( <. V ,  W >. F K ) )  <-> 
( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph )
) )
183, 17bitrd 253 1  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  <->  ( K  e.  V  /\  N  e.  V  /\  [. <. V ,  W >.  /  x ]. [. K  /  y ]. [. N  /  n ]. ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {crab 2818   _Vcvv 3113   [.wsbc 3331   <.cop 4033   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   1stc1st 6782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator