MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2mpts Structured version   Unicode version

Theorem mpt2mpts 6837
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
Assertion
Ref Expression
mpt2mpts  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )
Distinct variable groups:    x, y,
z, A    y, B, z    z, C    x, B
Allowed substitution hints:    C( x, y)

Proof of Theorem mpt2mpts
StepHypRef Expression
1 mpt2mptsx 6836 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
2 iunxpconst 5045 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
3 mpteq1 4519 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  ( A  X.  B )  ->  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )  =  ( z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C ) )
42, 3ax-mp 5 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  / 
y ]_ C )  =  ( z  e.  ( A  X.  B ) 
|->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )
51, 4eqtri 2483 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  [_ ( 1st `  z
)  /  x ]_ [_ ( 2nd `  z
)  /  y ]_ C )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398   [_csb 3420   {csn 4016   U_ciun 4315    |-> cmpt 4497    X. cxp 4986   ` cfv 5570    |-> cmpt2 6272   1stc1st 6771   2ndc2nd 6772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fv 5578  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774
This theorem is referenced by:  offval22  6852  dfmpt2  6863  mpt2sn  6864  matgsum  19109
  Copyright terms: Public domain W3C validator