MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2mpt Structured version   Unicode version

Theorem mpt2mpt 6367
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
mpt2mpt.1  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
Assertion
Ref Expression
mpt2mpt  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Distinct variable groups:    x, y,
z, A    y, B, z    x, C, y    z, D    x, B
Allowed substitution hints:    C( z)    D( x, y)

Proof of Theorem mpt2mpt
StepHypRef Expression
1 iunxpconst 5045 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
2 mpteq1 4519 . . 3  |-  ( U_ x  e.  A  ( { x }  X.  B )  =  ( A  X.  B )  ->  ( z  e. 
U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B
)  |->  C ) )
31, 2ax-mp 5 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( z  e.  ( A  X.  B )  |->  C )
4 mpt2mpt.1 . . 3  |-  ( z  =  <. x ,  y
>.  ->  C  =  D )
54mpt2mptx 6366 . 2  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
63, 5eqtr3i 2485 1  |-  ( z  e.  ( A  X.  B )  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398   {csn 4016   <.cop 4022   U_ciun 4315    |-> cmpt 4497    X. cxp 4986    |-> cmpt2 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-iun 4317  df-opab 4498  df-mpt 4499  df-xp 4994  df-rel 4995  df-oprab 6274  df-mpt2 6275
This theorem is referenced by:  fconstmpt2  6370  fnov  6383  fmpt2co  6856  xpf1o  7672  resfval2  15384  catcisolem  15587  xpccatid  15659  curf2ndf  15718  evlslem4OLD  18371  evlslem4  18372  mdetunilem9  19292  txbas  20237  cnmpt1st  20338  cnmpt2nd  20339  cnmpt2c  20340  cnmpt2t  20343  txhmeo  20473  txswaphmeolem  20474  ptuncnv  20477  ptunhmeo  20478  xpstopnlem1  20479  xkohmeo  20485  prdstmdd  20791  ucnimalem  20952  fmucndlem  20963  fsum2cn  21544  fimaproj  28074  idfusubc0  32944  lmod1zr  33367
  Copyright terms: Public domain W3C validator