MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2exxg Structured version   Unicode version

Theorem mpt2exxg 6858
Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
mpt2exg.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpt2exxg  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Distinct variable groups:    x, A, y    y, B
Allowed substitution hints:    B( x)    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpt2exxg
StepHypRef Expression
1 mpt2exg.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21mpt2fun 6389 . 2  |-  Fun  F
31dmmpt2ssx 6850 . . 3  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
4 snex 4688 . . . . . 6  |-  { x }  e.  _V
5 xpexg 6587 . . . . . 6  |-  ( ( { x }  e.  _V  /\  B  e.  S
)  ->  ( {
x }  X.  B
)  e.  _V )
64, 5mpan 670 . . . . 5  |-  ( B  e.  S  ->  ( { x }  X.  B )  e.  _V )
76ralimi 2857 . . . 4  |-  ( A. x  e.  A  B  e.  S  ->  A. x  e.  A  ( {
x }  X.  B
)  e.  _V )
8 iunexg 6761 . . . 4  |-  ( ( A  e.  R  /\  A. x  e.  A  ( { x }  X.  B )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  B )  e.  _V )
97, 8sylan2 474 . . 3  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  U_ x  e.  A  ( {
x }  X.  B
)  e.  _V )
10 ssexg 4593 . . 3  |-  ( ( dom  F  C_  U_ x  e.  A  ( {
x }  X.  B
)  /\  U_ x  e.  A  ( { x }  X.  B )  e. 
_V )  ->  dom  F  e.  _V )
113, 9, 10sylancr 663 . 2  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  dom  F  e.  _V )
12 funex 6129 . 2  |-  ( ( Fun  F  /\  dom  F  e.  _V )  ->  F  e.  _V )
132, 11, 12sylancr 663 1  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    C_ wss 3476   {csn 4027   U_ciun 4325    X. cxp 4997   dom cdm 4999   Fun wfun 5582    |-> cmpt2 6287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786
This theorem is referenced by:  mpt2exg  6859  mpt2ex  6861  gsum2d2lem  16816  taylfval  22580  ptrest  29901
  Copyright terms: Public domain W3C validator