MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2exg Structured version   Unicode version

Theorem mpt2exg 6848
Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
mpt2exg.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
mpt2exg  |-  ( ( A  e.  R  /\  B  e.  S )  ->  F  e.  _V )
Distinct variable groups:    x, A, y    y, B, x
Allowed substitution hints:    C( x, y)    R( x, y)    S( x, y)    F( x, y)

Proof of Theorem mpt2exg
StepHypRef Expression
1 elex 3115 . . 3  |-  ( B  e.  S  ->  B  e.  _V )
2 elex 3115 . . . 4  |-  ( B  e.  _V  ->  B  e.  _V )
32ralrimivw 2872 . . 3  |-  ( B  e.  _V  ->  A. x  e.  A  B  e.  _V )
41, 3syl 16 . 2  |-  ( B  e.  S  ->  A. x  e.  A  B  e.  _V )
5 mpt2exg.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
65mpt2exxg 6847 . 2  |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  _V )  ->  F  e.  _V )
74, 6sylan2 474 1  |-  ( ( A  e.  R  /\  B  e.  S )  ->  F  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106    |-> cmpt2 6277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775
This theorem is referenced by:  mpt2exga  6849  prdsip  14705  maduval  18900  mat2pmatf  18989  m2cpmf  19003  decpmatval0  19025  mply1topmatval  19065  motplusg  23650  pstmval  27496  eulerpartgbij  27937  lmod1lem1  32044  lmod1lem3  32046  lmod1lem5  32048
  Copyright terms: Public domain W3C validator