Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpt2cti Structured version   Unicode version

Theorem mpt2cti 27311
Description: An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017.)
Hypothesis
Ref Expression
mpt2cti.1  |-  A. x  e.  A  A. y  e.  B  C  e.  V
Assertion
Ref Expression
mpt2cti  |-  ( ( A  ~<_  om  /\  B  ~<_  om )  ->  ( x  e.  A ,  y  e.  B  |->  C )  ~<_  om )
Distinct variable groups:    x, y, A    y, B, x
Allowed substitution hints:    C( x, y)    V( x, y)

Proof of Theorem mpt2cti
StepHypRef Expression
1 mpt2cti.1 . . 3  |-  A. x  e.  A  A. y  e.  B  C  e.  V
2 eqid 2467 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
32fnmpt2 6853 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( x  e.  A ,  y  e.  B  |->  C )  Fn  ( A  X.  B ) )
41, 3ax-mp 5 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  Fn  ( A  X.  B )
5 xpct 27302 . 2  |-  ( ( A  ~<_  om  /\  B  ~<_  om )  ->  ( A  X.  B )  ~<_  om )
6 fnct 27305 . 2  |-  ( ( ( x  e.  A ,  y  e.  B  |->  C )  Fn  ( A  X.  B )  /\  ( A  X.  B
)  ~<_  om )  ->  (
x  e.  A , 
y  e.  B  |->  C )  ~<_  om )
74, 5, 6sylancr 663 1  |-  ( ( A  ~<_  om  /\  B  ~<_  om )  ->  ( x  e.  A ,  y  e.  B  |->  C )  ~<_  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   A.wral 2814   class class class wbr 4447    X. cxp 4997    Fn wfn 5583    |-> cmpt2 6287   omcom 6685    ~<_ cdom 7515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-inf2 8059  ax-ac2 8844
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-map 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-oi 7936  df-card 8321  df-acn 8324  df-ac 8498
This theorem is referenced by:  dya2iocct  28002
  Copyright terms: Public domain W3C validator