MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt22eqb Structured version   Unicode version

Theorem mpt22eqb 6197
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 6195. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
mpt22eqb  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Distinct variable groups:    x, y, A    y, B
Allowed substitution hints:    B( x)    C( x, y)    D( x, y)    V( x, y)

Proof of Theorem mpt22eqb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pm13.183 3098 . . . . . 6  |-  ( C  e.  V  ->  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) ) )
21ralimi 2789 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( C  =  D  <->  A. z ( z  =  C  <->  z  =  D ) ) )
3 ralbi 2851 . . . . 5  |-  ( A. y  e.  B  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
42, 3syl 16 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
54ralimi 2789 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
6 ralbi 2851 . . 3  |-  ( A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
75, 6syl 16 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
8 df-mpt2 6094 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
9 df-mpt2 6094 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) }
108, 9eqeq12i 2454 . . 3  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) } )
11 eqoprab2b 6142 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) }  <->  A. x A. y A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
12 pm5.32 636 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ( z  =  C  <->  z  =  D ) )  <->  ( (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
1312albii 1610 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
14 19.21v 1909 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
1513, 14bitr3i 251 . . . . 5  |-  ( A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)  <->  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
16152albii 1611 . . . 4  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
17 r2al 2750 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D )  <->  A. x A. y
( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
1816, 17bitr4i 252 . . 3  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x  e.  A  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )
1910, 11, 183bitri 271 . 2  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) )
207, 19syl6rbbr 264 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756   A.wral 2713   {coprab 6090    e. cmpt2 6091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rab 2722  df-v 2972  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-oprab 6093  df-mpt2 6094
This theorem is referenced by:  homfeq  14631  comfeq  14643
  Copyright terms: Public domain W3C validator