MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt22eqb Structured version   Unicode version

Theorem mpt22eqb 6393
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 6391. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
mpt22eqb  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Distinct variable groups:    x, y, A    y, B
Allowed substitution hints:    B( x)    C( x, y)    D( x, y)    V( x, y)

Proof of Theorem mpt22eqb
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 pm13.183 3244 . . . . . 6  |-  ( C  e.  V  ->  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) ) )
21ralimi 2857 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( C  =  D  <->  A. z ( z  =  C  <->  z  =  D ) ) )
3 ralbi 2993 . . . . 5  |-  ( A. y  e.  B  ( C  =  D  <->  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
42, 3syl 16 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
54ralimi 2857 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
6 ralbi 2993 . . 3  |-  ( A. x  e.  A  ( A. y  e.  B  C  =  D  <->  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
75, 6syl 16 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. x  e.  A  A. y  e.  B  C  =  D  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) ) )
8 df-mpt2 6287 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
9 df-mpt2 6287 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  D )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) }
108, 9eqeq12i 2487 . . 3  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) } )
11 eqoprab2b 6337 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) }  <->  A. x A. y A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
12 pm5.32 636 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ( z  =  C  <->  z  =  D ) )  <->  ( (
( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
1312albii 1620 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) ) )
14 19.21v 1930 . . . . . 6  |-  ( A. z ( ( x  e.  A  /\  y  e.  B )  ->  (
z  =  C  <->  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
1513, 14bitr3i 251 . . . . 5  |-  ( A. z ( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C
)  <->  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  D ) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  A. z ( z  =  C  <->  z  =  D ) ) )
16152albii 1621 . . . 4  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
17 r2al 2842 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D )  <->  A. x A. y
( ( x  e.  A  /\  y  e.  B )  ->  A. z
( z  =  C  <-> 
z  =  D ) ) )
1816, 17bitr4i 252 . . 3  |-  ( A. x A. y A. z
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  D
) )  <->  A. x  e.  A  A. y  e.  B  A. z
( z  =  C  <-> 
z  =  D ) )
1910, 11, 183bitri 271 . 2  |-  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  A. z ( z  =  C  <->  z  =  D ) )
207, 19syl6rbbr 264 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( ( x  e.  A , 
y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  D )  <->  A. x  e.  A  A. y  e.  B  C  =  D )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814   {coprab 6283    |-> cmpt2 6284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-oprab 6286  df-mpt2 6287
This theorem is referenced by:  homfeq  14943  comfeq  14955
  Copyright terms: Public domain W3C validator