MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval Structured version   Unicode version

Theorem mplval 17501
Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p  |-  P  =  ( I mPoly  R )
mplval.s  |-  S  =  ( I mPwSer  R )
mplval.b  |-  B  =  ( Base `  S
)
mplval.z  |-  .0.  =  ( 0g `  R )
mplval.u  |-  U  =  { f  e.  B  |  f finSupp  .0.  }
Assertion
Ref Expression
mplval  |-  P  =  ( Ss  U )
Distinct variable groups:    B, f    f, I    R, f    .0. , f
Allowed substitution hints:    P( f)    S( f)    U( f)

Proof of Theorem mplval
Dummy variables  i 
r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplval.p . 2  |-  P  =  ( I mPoly  R )
2 ovex 6116 . . . . . 6  |-  ( i mPwSer 
r )  e.  _V
32a1i 11 . . . . 5  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  e.  _V )
4 id 22 . . . . . . . 8  |-  ( s  =  ( i mPwSer  r
)  ->  s  =  ( i mPwSer  r )
)
5 oveq12 6100 . . . . . . . 8  |-  ( ( i  =  I  /\  r  =  R )  ->  ( i mPwSer  r )  =  ( I mPwSer  R
) )
64, 5sylan9eqr 2497 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  ( I mPwSer  R ) )
7 mplval.s . . . . . . 7  |-  S  =  ( I mPwSer  R )
86, 7syl6eqr 2493 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  s  =  S )
98fveq2d 5695 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  (
Base `  S )
)
10 mplval.b . . . . . . . . 9  |-  B  =  ( Base `  S
)
119, 10syl6eqr 2493 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( Base `  s )  =  B )
12 simplr 754 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  r  =  R )
1312fveq2d 5695 . . . . . . . . . 10  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  ( 0g `  R ) )
14 mplval.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  R )
1513, 14syl6eqr 2493 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( 0g `  r )  =  .0.  )
1615breq2d 4304 . . . . . . . 8  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( f finSupp  ( 0g `  r )  <-> 
f finSupp  .0.  ) )
1711, 16rabeqbidv 2967 . . . . . . 7  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  f finSupp  ( 0g `  r ) }  =  { f  e.  B  |  f finSupp  .0.  } )
18 mplval.u . . . . . . 7  |-  U  =  { f  e.  B  |  f finSupp  .0.  }
1917, 18syl6eqr 2493 . . . . . 6  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  { f  e.  ( Base `  s
)  |  f finSupp  ( 0g `  r ) }  =  U )
208, 19oveq12d 6109 . . . . 5  |-  ( ( ( i  =  I  /\  r  =  R )  /\  s  =  ( i mPwSer  r ) )  ->  ( ss  {
f  e.  ( Base `  s )  |  f finSupp 
( 0g `  r
) } )  =  ( Ss  U ) )
213, 20csbied 3314 . . . 4  |-  ( ( i  =  I  /\  r  =  R )  ->  [_ ( i mPwSer  r
)  /  s ]_ ( ss  { f  e.  (
Base `  s )  |  f finSupp  ( 0g `  r ) } )  =  ( Ss  U ) )
22 df-mpl 17425 . . . 4  |- mPoly  =  ( i  e.  _V , 
r  e.  _V  |->  [_ ( i mPwSer  r )  /  s ]_ (
ss 
{ f  e.  (
Base `  s )  |  f finSupp  ( 0g `  r ) } ) )
23 ovex 6116 . . . 4  |-  ( Ss  U )  e.  _V
2421, 22, 23ovmpt2a 6221 . . 3  |-  ( ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  ( Ss  U ) )
25 reldmmpl 17500 . . . . . 6  |-  Rel  dom mPoly
2625ovprc 6118 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  (/) )
27 ress0 14232 . . . . 5  |-  ( (/)s  U )  =  (/)
2826, 27syl6eqr 2493 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  ( (/)s  U ) )
29 reldmpsr 17428 . . . . . . 7  |-  Rel  dom mPwSer
3029ovprc 6118 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  (/) )
317, 30syl5eq 2487 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  S  =  (/) )
3231oveq1d 6106 . . . 4  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( Ss  U )  =  (
(/)s  U ) )
3328, 32eqtr4d 2478 . . 3  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPoly  R )  =  ( Ss  U ) )
3424, 33pm2.61i 164 . 2  |-  ( I mPoly 
R )  =  ( Ss  U )
351, 34eqtri 2463 1  |-  P  =  ( Ss  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2719   _Vcvv 2972   [_csb 3288   (/)c0 3637   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   finSupp cfsupp 7620   Basecbs 14174   ↾s cress 14175   0gc0g 14378   mPwSer cmps 17418   mPoly cmpl 17420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-iota 5381  df-fun 5420  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-slot 14178  df-base 14179  df-ress 14181  df-psr 17423  df-mpl 17425
This theorem is referenced by:  mplvalOLD  17502  mplbas  17503  mplval2  17507
  Copyright terms: Public domain W3C validator