MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Structured version   Visualization version   Unicode version

Theorem mplsubrglem 18712
Description: Lemma for mplsubrg 18713. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s  |-  S  =  ( I mPwSer  R )
mplsubg.p  |-  P  =  ( I mPoly  R )
mplsubg.u  |-  U  =  ( Base `  P
)
mplsubg.i  |-  ( ph  ->  I  e.  W )
mpllss.r  |-  ( ph  ->  R  e.  Ring )
mplsubrglem.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplsubrglem.z  |-  .0.  =  ( 0g `  R )
mplsubrglem.p  |-  A  =  (  oF  +  " ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
mplsubrglem.t  |-  .x.  =  ( .r `  R )
mplsubrglem.x  |-  ( ph  ->  X  e.  U )
mplsubrglem.y  |-  ( ph  ->  Y  e.  U )
Assertion
Ref Expression
mplsubrglem  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  U )
Distinct variable groups:    f, I    R, f    S, f    f, X   
f, Y    .0. , f
Allowed substitution hints:    ph( f)    A( f)    D( f)    P( f)    .x. ( f)    U( f)    W( f)

Proof of Theorem mplsubrglem
Dummy variables  k  n  x  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3  |-  S  =  ( I mPwSer  R )
2 eqid 2462 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2462 . . 3  |-  ( .r
`  S )  =  ( .r `  S
)
4 mpllss.r . . 3  |-  ( ph  ->  R  e.  Ring )
5 mplsubg.p . . . . 5  |-  P  =  ( I mPoly  R )
6 mplsubg.u . . . . 5  |-  U  =  ( Base `  P
)
75, 1, 6, 2mplbasss 18705 . . . 4  |-  U  C_  ( Base `  S )
8 mplsubrglem.x . . . 4  |-  ( ph  ->  X  e.  U )
97, 8sseldi 3442 . . 3  |-  ( ph  ->  X  e.  ( Base `  S ) )
10 mplsubrglem.y . . . 4  |-  ( ph  ->  Y  e.  U )
117, 10sseldi 3442 . . 3  |-  ( ph  ->  Y  e.  ( Base `  S ) )
121, 2, 3, 4, 9, 11psrmulcl 18661 . 2  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  ( Base `  S ) )
13 ovex 6343 . . . 4  |-  ( X ( .r `  S
) Y )  e. 
_V
1413a1i 11 . . 3  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  _V )
151, 2psrelbasfun 18653 . . . 4  |-  ( ( X ( .r `  S ) Y )  e.  ( Base `  S
)  ->  Fun  ( X ( .r `  S
) Y ) )
1612, 15syl 17 . . 3  |-  ( ph  ->  Fun  ( X ( .r `  S ) Y ) )
17 mplsubrglem.z . . . . 5  |-  .0.  =  ( 0g `  R )
18 fvex 5898 . . . . 5  |-  ( 0g
`  R )  e. 
_V
1917, 18eqeltri 2536 . . . 4  |-  .0.  e.  _V
2019a1i 11 . . 3  |-  ( ph  ->  .0.  e.  _V )
21 mplsubrglem.p . . . . 5  |-  A  =  (  oF  +  " ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
22 df-ima 4866 . . . . 5  |-  (  oF  +  " (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  =  ran  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )
2321, 22eqtri 2484 . . . 4  |-  A  =  ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
245, 1, 2, 17, 6mplelbas 18703 . . . . . . . 8  |-  ( X  e.  U  <->  ( X  e.  ( Base `  S
)  /\  X finSupp  .0.  )
)
2524simprbi 470 . . . . . . 7  |-  ( X  e.  U  ->  X finSupp  .0.  )
268, 25syl 17 . . . . . 6  |-  ( ph  ->  X finSupp  .0.  )
275, 1, 2, 17, 6mplelbas 18703 . . . . . . . 8  |-  ( Y  e.  U  <->  ( Y  e.  ( Base `  S
)  /\  Y finSupp  .0.  )
)
2827simprbi 470 . . . . . . 7  |-  ( Y  e.  U  ->  Y finSupp  .0.  )
2910, 28syl 17 . . . . . 6  |-  ( ph  ->  Y finSupp  .0.  )
30 fsuppxpfi 7926 . . . . . 6  |-  ( ( X finSupp  .0.  /\  Y finSupp  .0.  )  ->  ( ( X supp 
.0.  )  X.  ( Y supp  .0.  ) )  e. 
Fin )
3126, 29, 30syl2anc 671 . . . . 5  |-  ( ph  ->  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  e.  Fin )
32 ofmres 6816 . . . . . . 7  |-  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  =  ( f  e.  ( X supp 
.0.  ) ,  g  e.  ( Y supp  .0.  )  |->  ( f  oF  +  g ) )
33 ovex 6343 . . . . . . 7  |-  ( f  oF  +  g )  e.  _V
3432, 33fnmpt2i 6889 . . . . . 6  |-  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  Fn  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
)
35 dffn4 5822 . . . . . 6  |-  ( (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  Fn  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
)  <->  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) : ( ( X supp 
.0.  )  X.  ( Y supp  .0.  ) ) -onto-> ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) )
3634, 35mpbi 213 . . . . 5  |-  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) : ( ( X supp  .0.  )  X.  ( Y supp  .0.  )
) -onto-> ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
37 fofi 7886 . . . . 5  |-  ( ( ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  e.  Fin  /\  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) : ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) -onto-> ran  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) )  ->  ran  (  oF  +  |`  ( ( X supp 
.0.  )  X.  ( Y supp  .0.  ) ) )  e.  Fin )
3831, 36, 37sylancl 673 . . . 4  |-  ( ph  ->  ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )  e.  Fin )
3923, 38syl5eqel 2544 . . 3  |-  ( ph  ->  A  e.  Fin )
40 eqid 2462 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
41 mplsubrglem.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
421, 40, 41, 2, 12psrelbas 18652 . . . 4  |-  ( ph  ->  ( X ( .r
`  S ) Y ) : D --> ( Base `  R ) )
43 mplsubrglem.t . . . . . 6  |-  .x.  =  ( .r `  R )
449adantr 471 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  X  e.  ( Base `  S )
)
4511adantr 471 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  Y  e.  ( Base `  S )
)
46 eldifi 3567 . . . . . . 7  |-  ( k  e.  ( D  \  A )  ->  k  e.  D )
4746adantl 472 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  k  e.  D )
481, 2, 43, 3, 41, 44, 45, 47psrmulval 18659 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( ( X ( .r `  S ) Y ) `
 k )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) 
.x.  ( Y `  ( k  oF  -  x ) ) ) ) ) )
494ad2antrr 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  R  e.  Ring )
505, 40, 6, 41, 10mplelf 18706 . . . . . . . . . . . 12  |-  ( ph  ->  Y : D --> ( Base `  R ) )
5150ad2antrr 737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  Y : D --> ( Base `  R ) )
52 ssrab2 3526 . . . . . . . . . . . 12  |-  { y  e.  D  |  y  oR  <_  k }  C_  D
53 mplsubg.i . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  W )
5453ad2antrr 737 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  I  e.  W )
5547adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k  e.  D )
56 simpr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  e.  { y  e.  D  |  y  oR  <_  k } )
57 eqid 2462 . . . . . . . . . . . . . 14  |-  { y  e.  D  |  y  oR  <_  k }  =  { y  e.  D  |  y  oR  <_  k }
5841, 57psrbagconcl 18646 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  k  e.  D  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  ->  ( k  oF  -  x
)  e.  { y  e.  D  |  y  oR  <_  k } )
5954, 55, 56, 58syl3anc 1276 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  e. 
{ y  e.  D  |  y  oR 
<_  k } )
6052, 59sseldi 3442 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  e.  D )
6151, 60ffvelrnd 6046 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( Y `  (
k  oF  -  x ) )  e.  ( Base `  R
) )
6240, 43, 17ringlz 17866 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( Y `  ( k  oF  -  x
) )  e.  (
Base `  R )
)  ->  (  .0.  .x.  ( Y `  (
k  oF  -  x ) ) )  =  .0.  )
6349, 61, 62syl2anc 671 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
(  .0.  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  )
64 oveq1 6322 . . . . . . . . . 10  |-  ( ( X `  x )  =  .0.  ->  (
( X `  x
)  .x.  ( Y `  ( k  oF  -  x ) ) )  =  (  .0. 
.x.  ( Y `  ( k  oF  -  x ) ) ) )
6564eqeq1d 2464 . . . . . . . . 9  |-  ( ( X `  x )  =  .0.  ->  (
( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  <->  (  .0.  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  ) )
6663, 65syl5ibrcom 230 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  =  .0. 
->  ( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  ) )
675, 40, 6, 41, 8mplelf 18706 . . . . . . . . . . . 12  |-  ( ph  ->  X : D --> ( Base `  R ) )
6867ad2antrr 737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  X : D --> ( Base `  R ) )
6952, 56sseldi 3442 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  e.  D )
7068, 69ffvelrnd 6046 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( X `  x
)  e.  ( Base `  R ) )
7140, 43, 17ringrz 17867 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( X `  x )  e.  ( Base `  R
) )  ->  (
( X `  x
)  .x.  .0.  )  =  .0.  )
7249, 70, 71syl2anc 671 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  .x.  .0.  )  =  .0.  )
73 oveq2 6323 . . . . . . . . . 10  |-  ( ( Y `  ( k  oF  -  x
) )  =  .0. 
->  ( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  ( ( X `  x )  .x.  .0.  ) )
7473eqeq1d 2464 . . . . . . . . 9  |-  ( ( Y `  ( k  oF  -  x
) )  =  .0. 
->  ( ( ( X `
 x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  <->  ( ( X `
 x )  .x.  .0.  )  =  .0.  ) )
7572, 74syl5ibrcom 230 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( Y `  ( k  oF  -  x ) )  =  .0.  ->  (
( X `  x
)  .x.  ( Y `  ( k  oF  -  x ) ) )  =  .0.  )
)
7641psrbagf 18638 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  x  e.  D )  ->  x : I --> NN0 )
7754, 69, 76syl2anc 671 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x : I --> NN0 )
7877ffvelrnda 6045 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
x `  n )  e.  NN0 )
7941psrbagf 18638 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  k  e.  D )  ->  k : I --> NN0 )
8054, 55, 79syl2anc 671 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k : I --> NN0 )
8180ffvelrnda 6045 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
k `  n )  e.  NN0 )
82 nn0cn 10908 . . . . . . . . . . . . . . . . 17  |-  ( ( x `  n )  e.  NN0  ->  ( x `
 n )  e.  CC )
83 nn0cn 10908 . . . . . . . . . . . . . . . . 17  |-  ( ( k `  n )  e.  NN0  ->  ( k `
 n )  e.  CC )
84 pncan3 9909 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x `  n
)  e.  CC  /\  ( k `  n
)  e.  CC )  ->  ( ( x `
 n )  +  ( ( k `  n )  -  (
x `  n )
) )  =  ( k `  n ) )
8582, 83, 84syl2an 484 . . . . . . . . . . . . . . . 16  |-  ( ( ( x `  n
)  e.  NN0  /\  ( k `  n
)  e.  NN0 )  ->  ( ( x `  n )  +  ( ( k `  n
)  -  ( x `
 n ) ) )  =  ( k `
 n ) )
8678, 81, 85syl2anc 671 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
( x `  n
)  +  ( ( k `  n )  -  ( x `  n ) ) )  =  ( k `  n ) )
8786mpteq2dva 4503 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( n  e.  I  |->  ( ( x `  n )  +  ( ( k `  n
)  -  ( x `
 n ) ) ) )  =  ( n  e.  I  |->  ( k `  n ) ) )
88 ovex 6343 . . . . . . . . . . . . . . . 16  |-  ( ( k `  n )  -  ( x `  n ) )  e. 
_V
8988a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
( k `  n
)  -  ( x `
 n ) )  e.  _V )
9077feqmptd 5941 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  =  ( n  e.  I  |->  ( x `
 n ) ) )
9180feqmptd 5941 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k  =  ( n  e.  I  |->  ( k `
 n ) ) )
9254, 81, 78, 91, 90offval2 6575 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  =  ( n  e.  I  |->  ( ( k `  n )  -  (
x `  n )
) ) )
9354, 78, 89, 90, 92offval2 6575 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  oF  +  ( k  oF  -  x ) )  =  ( n  e.  I  |->  ( ( x `  n )  +  ( ( k `
 n )  -  ( x `  n
) ) ) ) )
9487, 93, 913eqtr4d 2506 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  oF  +  ( k  oF  -  x ) )  =  k )
95 simplr 767 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k  e.  ( D 
\  A ) )
9694, 95eqeltrd 2540 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  oF  +  ( k  oF  -  x ) )  e.  ( D 
\  A ) )
9796eldifbd 3429 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  -.  ( x  oF  +  ( k  oF  -  x ) )  e.  A )
98 ovres 6463 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X supp 
.0.  )  /\  (
k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  ( x (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) ( k  oF  -  x
) )  =  ( x  oF  +  ( k  oF  -  x ) ) )
99 fnovrn 6471 . . . . . . . . . . . . . 14  |-  ( ( (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )  Fn  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  /\  x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
)  ->  ( x
(  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) ( k  oF  -  x ) )  e. 
ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) )
10099, 23syl6eleqr 2551 . . . . . . . . . . . . 13  |-  ( ( (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )  Fn  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  /\  x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
)  ->  ( x
(  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) ( k  oF  -  x ) )  e.  A )
10134, 100mp3an1 1360 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X supp 
.0.  )  /\  (
k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  ( x (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) ( k  oF  -  x
) )  e.  A
)
10298, 101eqeltrrd 2541 . . . . . . . . . . 11  |-  ( ( x  e.  ( X supp 
.0.  )  /\  (
k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  ( x  oF  +  ( k  oF  -  x ) )  e.  A )
10397, 102nsyl 126 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  -.  ( x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
) )
104 ianor 495 . . . . . . . . . 10  |-  ( -.  ( x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
)  <->  ( -.  x  e.  ( X supp  .0.  )  \/  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) ) )
105103, 104sylib 201 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( -.  x  e.  ( X supp  .0.  )  \/  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) ) )
106 eldif 3426 . . . . . . . . . . . . 13  |-  ( x  e.  ( D  \ 
( X supp  .0.  )
)  <->  ( x  e.  D  /\  -.  x  e.  ( X supp  .0.  )
) )
107106baib 919 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
x  e.  ( D 
\  ( X supp  .0.  ) )  <->  -.  x  e.  ( X supp  .0.  )
) )
10869, 107syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  e.  ( D  \  ( X supp 
.0.  ) )  <->  -.  x  e.  ( X supp  .0.  )
) )
109 ssid 3463 . . . . . . . . . . . . . 14  |-  ( X supp 
.0.  )  C_  ( X supp  .0.  )
110109a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( X supp  .0.  )  C_  ( X supp  .0.  )
)
111 ovex 6343 . . . . . . . . . . . . . . 15  |-  ( NN0 
^m  I )  e. 
_V
11241, 111rabex2 4570 . . . . . . . . . . . . . 14  |-  D  e. 
_V
113112a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  D  e.  _V )
11419a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  .0.  e.  _V )
11568, 110, 113, 114suppssr 6973 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  x  e.  ( D  \  ( X supp  .0.  ) ) )  ->  ( X `  x )  =  .0.  )
116115ex 440 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  e.  ( D  \  ( X supp 
.0.  ) )  -> 
( X `  x
)  =  .0.  )
)
117108, 116sylbird 243 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( -.  x  e.  ( X supp  .0.  )  ->  ( X `  x
)  =  .0.  )
)
118 eldif 3426 . . . . . . . . . . . . 13  |-  ( ( k  oF  -  x )  e.  ( D  \  ( Y supp 
.0.  ) )  <->  ( (
k  oF  -  x )  e.  D  /\  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) ) )
119118baib 919 . . . . . . . . . . . 12  |-  ( ( k  oF  -  x )  e.  D  ->  ( ( k  oF  -  x )  e.  ( D  \ 
( Y supp  .0.  )
)  <->  -.  ( k  oF  -  x
)  e.  ( Y supp 
.0.  ) ) )
12060, 119syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( k  oF  -  x )  e.  ( D  \ 
( Y supp  .0.  )
)  <->  -.  ( k  oF  -  x
)  e.  ( Y supp 
.0.  ) ) )
121 ssid 3463 . . . . . . . . . . . . . 14  |-  ( Y supp 
.0.  )  C_  ( Y supp  .0.  )
122121a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( Y supp  .0.  )  C_  ( Y supp  .0.  )
)
12351, 122, 113, 114suppssr 6973 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  ( k  oF  -  x
)  e.  ( D 
\  ( Y supp  .0.  ) ) )  -> 
( Y `  (
k  oF  -  x ) )  =  .0.  )
124123ex 440 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( k  oF  -  x )  e.  ( D  \ 
( Y supp  .0.  )
)  ->  ( Y `  ( k  oF  -  x ) )  =  .0.  ) )
125120, 124sylbird 243 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( -.  ( k  oF  -  x
)  e.  ( Y supp 
.0.  )  ->  ( Y `  ( k  oF  -  x
) )  =  .0.  ) )
126117, 125orim12d 854 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( -.  x  e.  ( X supp  .0.  )  \/  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  (
( X `  x
)  =  .0.  \/  ( Y `  ( k  oF  -  x
) )  =  .0.  ) ) )
127105, 126mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  =  .0. 
\/  ( Y `  ( k  oF  -  x ) )  =  .0.  ) )
12866, 75, 127mpjaod 387 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  )
129128mpteq2dva 4503 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( x  e.  { y  e.  D  |  y  oR 
<_  k }  |->  ( ( X `  x ) 
.x.  ( Y `  ( k  oF  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )
130129oveq2d 6331 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x )  .x.  ( Y `  ( k  oF  -  x
) ) ) ) )  =  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )
)
1314adantr 471 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  R  e.  Ring )
132 ringmnd 17838 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
133131, 132syl 17 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  R  e.  Mnd )
13441psrbaglefi 18645 . . . . . . 7  |-  ( ( I  e.  W  /\  k  e.  D )  ->  { y  e.  D  |  y  oR 
<_  k }  e.  Fin )
13553, 46, 134syl2an 484 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  { y  e.  D  |  y  oR  <_  k }  e.  Fin )
13617gsumz 16670 . . . . . 6  |-  ( ( R  e.  Mnd  /\  { y  e.  D  | 
y  oR  <_ 
k }  e.  Fin )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )  =  .0.  )
137133, 135, 136syl2anc 671 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )  =  .0.  )
13848, 130, 1373eqtrd 2500 . . . 4  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( ( X ( .r `  S ) Y ) `
 k )  =  .0.  )
13942, 138suppss 6972 . . 3  |-  ( ph  ->  ( ( X ( .r `  S ) Y ) supp  .0.  )  C_  A )
140 suppssfifsupp 7924 . . 3  |-  ( ( ( ( X ( .r `  S ) Y )  e.  _V  /\ 
Fun  ( X ( .r `  S ) Y )  /\  .0.  e.  _V )  /\  ( A  e.  Fin  /\  (
( X ( .r
`  S ) Y ) supp  .0.  )  C_  A ) )  -> 
( X ( .r
`  S ) Y ) finSupp  .0.  )
14114, 16, 20, 39, 139, 140syl32anc 1284 . 2  |-  ( ph  ->  ( X ( .r
`  S ) Y ) finSupp  .0.  )
1425, 1, 2, 17, 6mplelbas 18703 . 2  |-  ( ( X ( .r `  S ) Y )  e.  U  <->  ( ( X ( .r `  S ) Y )  e.  ( Base `  S
)  /\  ( X
( .r `  S
) Y ) finSupp  .0.  ) )
14312, 141, 142sylanbrc 675 1  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898   {crab 2753   _Vcvv 3057    \ cdif 3413    C_ wss 3416   class class class wbr 4416    |-> cmpt 4475    X. cxp 4851   `'ccnv 4852   ran crn 4854    |` cres 4855   "cima 4856   Fun wfun 5595    Fn wfn 5596   -->wf 5597   -onto->wfo 5599   ` cfv 5601  (class class class)co 6315    oFcof 6556    oRcofr 6557   supp csupp 6941    ^m cmap 7498   Fincfn 7595   finSupp cfsupp 7909   CCcc 9563    + caddc 9568    <_ cle 9702    - cmin 9886   NNcn 10637   NN0cn0 10898   Basecbs 15170   .rcmulr 15240   0gc0g 15387    gsumg cgsu 15388   Mndcmnd 16584   Ringcrg 17829   mPwSer cmps 18624   mPoly cmpl 18626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-ofr 6559  df-om 6720  df-1st 6820  df-2nd 6821  df-supp 6942  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-er 7389  df-map 7500  df-pm 7501  df-ixp 7549  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-fsupp 7910  df-oi 8051  df-card 8399  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-n0 10899  df-z 10967  df-uz 11189  df-fz 11814  df-fzo 11947  df-seq 12246  df-hash 12548  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-sca 15255  df-vsca 15256  df-tset 15258  df-0g 15389  df-gsum 15390  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-grp 16722  df-minusg 16723  df-cntz 17020  df-cmn 17481  df-abl 17482  df-mgp 17773  df-ur 17785  df-ring 17831  df-psr 18629  df-mpl 18631
This theorem is referenced by:  mplsubrg  18713
  Copyright terms: Public domain W3C validator