MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Structured version   Unicode version

Theorem mplsubrglem 18079
Description: Lemma for mplsubrg 18081. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s  |-  S  =  ( I mPwSer  R )
mplsubg.p  |-  P  =  ( I mPoly  R )
mplsubg.u  |-  U  =  ( Base `  P
)
mplsubg.i  |-  ( ph  ->  I  e.  W )
mpllss.r  |-  ( ph  ->  R  e.  Ring )
mplsubrglem.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplsubrglem.z  |-  .0.  =  ( 0g `  R )
mplsubrglem.p  |-  A  =  (  oF  +  " ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
mplsubrglem.t  |-  .x.  =  ( .r `  R )
mplsubrglem.x  |-  ( ph  ->  X  e.  U )
mplsubrglem.y  |-  ( ph  ->  Y  e.  U )
Assertion
Ref Expression
mplsubrglem  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  U )
Distinct variable groups:    f, I    R, f    S, f    f, X   
f, Y    .0. , f
Allowed substitution hints:    ph( f)    A( f)    D( f)    P( f)    .x. ( f)    U( f)    W( f)

Proof of Theorem mplsubrglem
Dummy variables  k  n  x  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3  |-  S  =  ( I mPwSer  R )
2 eqid 2443 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2443 . . 3  |-  ( .r
`  S )  =  ( .r `  S
)
4 mpllss.r . . 3  |-  ( ph  ->  R  e.  Ring )
5 mplsubg.p . . . . 5  |-  P  =  ( I mPoly  R )
6 mplsubg.u . . . . 5  |-  U  =  ( Base `  P
)
75, 1, 6, 2mplbasss 18070 . . . 4  |-  U  C_  ( Base `  S )
8 mplsubrglem.x . . . 4  |-  ( ph  ->  X  e.  U )
97, 8sseldi 3487 . . 3  |-  ( ph  ->  X  e.  ( Base `  S ) )
10 mplsubrglem.y . . . 4  |-  ( ph  ->  Y  e.  U )
117, 10sseldi 3487 . . 3  |-  ( ph  ->  Y  e.  ( Base `  S ) )
121, 2, 3, 4, 9, 11psrmulcl 18020 . 2  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  ( Base `  S ) )
13 ovex 6309 . . . 4  |-  ( X ( .r `  S
) Y )  e. 
_V
1413a1i 11 . . 3  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  _V )
151, 2psrelbasfun 18012 . . . 4  |-  ( ( X ( .r `  S ) Y )  e.  ( Base `  S
)  ->  Fun  ( X ( .r `  S
) Y ) )
1612, 15syl 16 . . 3  |-  ( ph  ->  Fun  ( X ( .r `  S ) Y ) )
17 mplsubrglem.z . . . . 5  |-  .0.  =  ( 0g `  R )
18 fvex 5866 . . . . 5  |-  ( 0g
`  R )  e. 
_V
1917, 18eqeltri 2527 . . . 4  |-  .0.  e.  _V
2019a1i 11 . . 3  |-  ( ph  ->  .0.  e.  _V )
21 mplsubrglem.p . . . . 5  |-  A  =  (  oF  +  " ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
22 df-ima 5002 . . . . 5  |-  (  oF  +  " (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  =  ran  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )
2321, 22eqtri 2472 . . . 4  |-  A  =  ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
245, 1, 2, 17, 6mplelbas 18066 . . . . . . . 8  |-  ( X  e.  U  <->  ( X  e.  ( Base `  S
)  /\  X finSupp  .0.  )
)
2524simprbi 464 . . . . . . 7  |-  ( X  e.  U  ->  X finSupp  .0.  )
268, 25syl 16 . . . . . 6  |-  ( ph  ->  X finSupp  .0.  )
275, 1, 2, 17, 6mplelbas 18066 . . . . . . . 8  |-  ( Y  e.  U  <->  ( Y  e.  ( Base `  S
)  /\  Y finSupp  .0.  )
)
2827simprbi 464 . . . . . . 7  |-  ( Y  e.  U  ->  Y finSupp  .0.  )
2910, 28syl 16 . . . . . 6  |-  ( ph  ->  Y finSupp  .0.  )
30 fsuppxpfi 7848 . . . . . 6  |-  ( ( X finSupp  .0.  /\  Y finSupp  .0.  )  ->  ( ( X supp 
.0.  )  X.  ( Y supp  .0.  ) )  e. 
Fin )
3126, 29, 30syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  e.  Fin )
32 ofmres 6781 . . . . . . 7  |-  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  =  ( f  e.  ( X supp 
.0.  ) ,  g  e.  ( Y supp  .0.  )  |->  ( f  oF  +  g ) )
33 ovex 6309 . . . . . . 7  |-  ( f  oF  +  g )  e.  _V
3432, 33fnmpt2i 6854 . . . . . 6  |-  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  Fn  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
)
35 dffn4 5791 . . . . . 6  |-  ( (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) )  Fn  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
)  <->  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) : ( ( X supp 
.0.  )  X.  ( Y supp  .0.  ) ) -onto-> ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) )
3634, 35mpbi 208 . . . . 5  |-  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) : ( ( X supp  .0.  )  X.  ( Y supp  .0.  )
) -onto-> ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )
37 fofi 7808 . . . . 5  |-  ( ( ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  e.  Fin  /\  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) : ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) -onto-> ran  (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) )  ->  ran  (  oF  +  |`  ( ( X supp 
.0.  )  X.  ( Y supp  .0.  ) ) )  e.  Fin )
3831, 36, 37sylancl 662 . . . 4  |-  ( ph  ->  ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )  e.  Fin )
3923, 38syl5eqel 2535 . . 3  |-  ( ph  ->  A  e.  Fin )
40 eqid 2443 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
41 mplsubrglem.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
421, 40, 41, 2, 12psrelbas 18011 . . . 4  |-  ( ph  ->  ( X ( .r
`  S ) Y ) : D --> ( Base `  R ) )
43 mplsubrglem.t . . . . . 6  |-  .x.  =  ( .r `  R )
449adantr 465 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  X  e.  ( Base `  S )
)
4511adantr 465 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  Y  e.  ( Base `  S )
)
46 eldifi 3611 . . . . . . 7  |-  ( k  e.  ( D  \  A )  ->  k  e.  D )
4746adantl 466 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  k  e.  D )
481, 2, 43, 3, 41, 44, 45, 47psrmulval 18018 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( ( X ( .r `  S ) Y ) `
 k )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) 
.x.  ( Y `  ( k  oF  -  x ) ) ) ) ) )
494ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  R  e.  Ring )
505, 40, 6, 41, 10mplelf 18071 . . . . . . . . . . . 12  |-  ( ph  ->  Y : D --> ( Base `  R ) )
5150ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  Y : D --> ( Base `  R ) )
52 ssrab2 3570 . . . . . . . . . . . 12  |-  { y  e.  D  |  y  oR  <_  k }  C_  D
53 mplsubg.i . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  W )
5453ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  I  e.  W )
5547adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k  e.  D )
56 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  e.  { y  e.  D  |  y  oR  <_  k } )
57 eqid 2443 . . . . . . . . . . . . . 14  |-  { y  e.  D  |  y  oR  <_  k }  =  { y  e.  D  |  y  oR  <_  k }
5841, 57psrbagconcl 18004 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  k  e.  D  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  ->  ( k  oF  -  x
)  e.  { y  e.  D  |  y  oR  <_  k } )
5954, 55, 56, 58syl3anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  e. 
{ y  e.  D  |  y  oR 
<_  k } )
6052, 59sseldi 3487 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  e.  D )
6151, 60ffvelrnd 6017 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( Y `  (
k  oF  -  x ) )  e.  ( Base `  R
) )
6240, 43, 17ringlz 17214 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( Y `  ( k  oF  -  x
) )  e.  (
Base `  R )
)  ->  (  .0.  .x.  ( Y `  (
k  oF  -  x ) ) )  =  .0.  )
6349, 61, 62syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
(  .0.  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  )
64 oveq1 6288 . . . . . . . . . 10  |-  ( ( X `  x )  =  .0.  ->  (
( X `  x
)  .x.  ( Y `  ( k  oF  -  x ) ) )  =  (  .0. 
.x.  ( Y `  ( k  oF  -  x ) ) ) )
6564eqeq1d 2445 . . . . . . . . 9  |-  ( ( X `  x )  =  .0.  ->  (
( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  <->  (  .0.  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  ) )
6663, 65syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  =  .0. 
->  ( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  ) )
675, 40, 6, 41, 8mplelf 18071 . . . . . . . . . . . 12  |-  ( ph  ->  X : D --> ( Base `  R ) )
6867ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  X : D --> ( Base `  R ) )
6952, 56sseldi 3487 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  e.  D )
7068, 69ffvelrnd 6017 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( X `  x
)  e.  ( Base `  R ) )
7140, 43, 17ringrz 17215 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( X `  x )  e.  ( Base `  R
) )  ->  (
( X `  x
)  .x.  .0.  )  =  .0.  )
7249, 70, 71syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  .x.  .0.  )  =  .0.  )
73 oveq2 6289 . . . . . . . . . 10  |-  ( ( Y `  ( k  oF  -  x
) )  =  .0. 
->  ( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  ( ( X `  x )  .x.  .0.  ) )
7473eqeq1d 2445 . . . . . . . . 9  |-  ( ( Y `  ( k  oF  -  x
) )  =  .0. 
->  ( ( ( X `
 x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  <->  ( ( X `
 x )  .x.  .0.  )  =  .0.  ) )
7572, 74syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( Y `  ( k  oF  -  x ) )  =  .0.  ->  (
( X `  x
)  .x.  ( Y `  ( k  oF  -  x ) ) )  =  .0.  )
)
7641psrbagf 17993 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  x  e.  D )  ->  x : I --> NN0 )
7754, 69, 76syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x : I --> NN0 )
7877ffvelrnda 6016 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
x `  n )  e.  NN0 )
7941psrbagf 17993 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  k  e.  D )  ->  k : I --> NN0 )
8054, 55, 79syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k : I --> NN0 )
8180ffvelrnda 6016 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
k `  n )  e.  NN0 )
82 nn0cn 10812 . . . . . . . . . . . . . . . . 17  |-  ( ( x `  n )  e.  NN0  ->  ( x `
 n )  e.  CC )
83 nn0cn 10812 . . . . . . . . . . . . . . . . 17  |-  ( ( k `  n )  e.  NN0  ->  ( k `
 n )  e.  CC )
84 pncan3 9833 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x `  n
)  e.  CC  /\  ( k `  n
)  e.  CC )  ->  ( ( x `
 n )  +  ( ( k `  n )  -  (
x `  n )
) )  =  ( k `  n ) )
8582, 83, 84syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( x `  n
)  e.  NN0  /\  ( k `  n
)  e.  NN0 )  ->  ( ( x `  n )  +  ( ( k `  n
)  -  ( x `
 n ) ) )  =  ( k `
 n ) )
8678, 81, 85syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
( x `  n
)  +  ( ( k `  n )  -  ( x `  n ) ) )  =  ( k `  n ) )
8786mpteq2dva 4523 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( n  e.  I  |->  ( ( x `  n )  +  ( ( k `  n
)  -  ( x `
 n ) ) ) )  =  ( n  e.  I  |->  ( k `  n ) ) )
88 ovex 6309 . . . . . . . . . . . . . . . 16  |-  ( ( k `  n )  -  ( x `  n ) )  e. 
_V
8988a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  n  e.  I )  ->  (
( k `  n
)  -  ( x `
 n ) )  e.  _V )
9077feqmptd 5911 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  x  =  ( n  e.  I  |->  ( x `
 n ) ) )
9180feqmptd 5911 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k  =  ( n  e.  I  |->  ( k `
 n ) ) )
9254, 81, 78, 91, 90offval2 6541 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( k  oF  -  x )  =  ( n  e.  I  |->  ( ( k `  n )  -  (
x `  n )
) ) )
9354, 78, 89, 90, 92offval2 6541 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  oF  +  ( k  oF  -  x ) )  =  ( n  e.  I  |->  ( ( x `  n )  +  ( ( k `
 n )  -  ( x `  n
) ) ) ) )
9487, 93, 913eqtr4d 2494 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  oF  +  ( k  oF  -  x ) )  =  k )
95 simplr 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
k  e.  ( D 
\  A ) )
9694, 95eqeltrd 2531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  oF  +  ( k  oF  -  x ) )  e.  ( D 
\  A ) )
9796eldifbd 3474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  -.  ( x  oF  +  ( k  oF  -  x ) )  e.  A )
98 ovres 6427 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X supp 
.0.  )  /\  (
k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  ( x (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) ( k  oF  -  x
) )  =  ( x  oF  +  ( k  oF  -  x ) ) )
99 fnovrn 6435 . . . . . . . . . . . . . 14  |-  ( ( (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )  Fn  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  /\  x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
)  ->  ( x
(  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) ( k  oF  -  x ) )  e. 
ran  (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) )
10099, 23syl6eleqr 2542 . . . . . . . . . . . . 13  |-  ( ( (  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) )  Fn  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) )  /\  x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
)  ->  ( x
(  oF  +  |`  ( ( X supp  .0.  )  X.  ( Y supp  .0.  ) ) ) ( k  oF  -  x ) )  e.  A )
10134, 100mp3an1 1312 . . . . . . . . . . . 12  |-  ( ( x  e.  ( X supp 
.0.  )  /\  (
k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  ( x (  oF  +  |`  (
( X supp  .0.  )  X.  ( Y supp  .0.  )
) ) ( k  oF  -  x
) )  e.  A
)
10298, 101eqeltrrd 2532 . . . . . . . . . . 11  |-  ( ( x  e.  ( X supp 
.0.  )  /\  (
k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  ( x  oF  +  ( k  oF  -  x ) )  e.  A )
10397, 102nsyl 121 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  -.  ( x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
) )
104 ianor 488 . . . . . . . . . 10  |-  ( -.  ( x  e.  ( X supp  .0.  )  /\  ( k  oF  -  x )  e.  ( Y supp  .0.  )
)  <->  ( -.  x  e.  ( X supp  .0.  )  \/  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) ) )
105103, 104sylib 196 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( -.  x  e.  ( X supp  .0.  )  \/  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) ) )
106 eldif 3471 . . . . . . . . . . . . 13  |-  ( x  e.  ( D  \ 
( X supp  .0.  )
)  <->  ( x  e.  D  /\  -.  x  e.  ( X supp  .0.  )
) )
107106baib 903 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
x  e.  ( D 
\  ( X supp  .0.  ) )  <->  -.  x  e.  ( X supp  .0.  )
) )
10869, 107syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  e.  ( D  \  ( X supp 
.0.  ) )  <->  -.  x  e.  ( X supp  .0.  )
) )
109 ssid 3508 . . . . . . . . . . . . . 14  |-  ( X supp 
.0.  )  C_  ( X supp  .0.  )
110109a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( X supp  .0.  )  C_  ( X supp  .0.  )
)
111 ovex 6309 . . . . . . . . . . . . . . 15  |-  ( NN0 
^m  I )  e. 
_V
11241, 111rabex2 4590 . . . . . . . . . . . . . 14  |-  D  e. 
_V
113112a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  D  e.  _V )
11419a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  ->  .0.  e.  _V )
11568, 110, 113, 114suppssr 6933 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  x  e.  ( D  \  ( X supp  .0.  ) ) )  ->  ( X `  x )  =  .0.  )
116115ex 434 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( x  e.  ( D  \  ( X supp 
.0.  ) )  -> 
( X `  x
)  =  .0.  )
)
117108, 116sylbird 235 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( -.  x  e.  ( X supp  .0.  )  ->  ( X `  x
)  =  .0.  )
)
118 eldif 3471 . . . . . . . . . . . . 13  |-  ( ( k  oF  -  x )  e.  ( D  \  ( Y supp 
.0.  ) )  <->  ( (
k  oF  -  x )  e.  D  /\  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) ) )
119118baib 903 . . . . . . . . . . . 12  |-  ( ( k  oF  -  x )  e.  D  ->  ( ( k  oF  -  x )  e.  ( D  \ 
( Y supp  .0.  )
)  <->  -.  ( k  oF  -  x
)  e.  ( Y supp 
.0.  ) ) )
12060, 119syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( k  oF  -  x )  e.  ( D  \ 
( Y supp  .0.  )
)  <->  -.  ( k  oF  -  x
)  e.  ( Y supp 
.0.  ) ) )
121 ssid 3508 . . . . . . . . . . . . . 14  |-  ( Y supp 
.0.  )  C_  ( Y supp  .0.  )
122121a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( Y supp  .0.  )  C_  ( Y supp  .0.  )
)
12351, 122, 113, 114suppssr 6933 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  oR  <_  k } )  /\  ( k  oF  -  x
)  e.  ( D 
\  ( Y supp  .0.  ) ) )  -> 
( Y `  (
k  oF  -  x ) )  =  .0.  )
124123ex 434 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( k  oF  -  x )  e.  ( D  \ 
( Y supp  .0.  )
)  ->  ( Y `  ( k  oF  -  x ) )  =  .0.  ) )
125120, 124sylbird 235 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( -.  ( k  oF  -  x
)  e.  ( Y supp 
.0.  )  ->  ( Y `  ( k  oF  -  x
) )  =  .0.  ) )
126117, 125orim12d 838 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( -.  x  e.  ( X supp  .0.  )  \/  -.  ( k  oF  -  x )  e.  ( Y supp  .0.  ) )  ->  (
( X `  x
)  =  .0.  \/  ( Y `  ( k  oF  -  x
) )  =  .0.  ) ) )
127105, 126mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  =  .0. 
\/  ( Y `  ( k  oF  -  x ) )  =  .0.  ) )
12866, 75, 127mpjaod 381 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  oR 
<_  k } )  -> 
( ( X `  x )  .x.  ( Y `  ( k  oF  -  x
) ) )  =  .0.  )
129128mpteq2dva 4523 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( x  e.  { y  e.  D  |  y  oR 
<_  k }  |->  ( ( X `  x ) 
.x.  ( Y `  ( k  oF  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )
130129oveq2d 6297 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( X `
 x )  .x.  ( Y `  ( k  oF  -  x
) ) ) ) )  =  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )
)
1314adantr 465 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  R  e.  Ring )
132 ringmnd 17186 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
133131, 132syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  R  e.  Mnd )
13441psrbaglefi 18002 . . . . . . 7  |-  ( ( I  e.  W  /\  k  e.  D )  ->  { y  e.  D  |  y  oR 
<_  k }  e.  Fin )
13553, 46, 134syl2an 477 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  { y  e.  D  |  y  oR  <_  k }  e.  Fin )
13617gsumz 15984 . . . . . 6  |-  ( ( R  e.  Mnd  /\  { y  e.  D  | 
y  oR  <_ 
k }  e.  Fin )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )  =  .0.  )
137133, 135, 136syl2anc 661 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  .0.  ) )  =  .0.  )
13848, 130, 1373eqtrd 2488 . . . 4  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( ( X ( .r `  S ) Y ) `
 k )  =  .0.  )
13942, 138suppss 6932 . . 3  |-  ( ph  ->  ( ( X ( .r `  S ) Y ) supp  .0.  )  C_  A )
140 suppssfifsupp 7846 . . 3  |-  ( ( ( ( X ( .r `  S ) Y )  e.  _V  /\ 
Fun  ( X ( .r `  S ) Y )  /\  .0.  e.  _V )  /\  ( A  e.  Fin  /\  (
( X ( .r
`  S ) Y ) supp  .0.  )  C_  A ) )  -> 
( X ( .r
`  S ) Y ) finSupp  .0.  )
14114, 16, 20, 39, 139, 140syl32anc 1237 . 2  |-  ( ph  ->  ( X ( .r
`  S ) Y ) finSupp  .0.  )
1425, 1, 2, 17, 6mplelbas 18066 . 2  |-  ( ( X ( .r `  S ) Y )  e.  U  <->  ( ( X ( .r `  S ) Y )  e.  ( Base `  S
)  /\  ( X
( .r `  S
) Y ) finSupp  .0.  ) )
14312, 141, 142sylanbrc 664 1  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   {crab 2797   _Vcvv 3095    \ cdif 3458    C_ wss 3461   class class class wbr 4437    |-> cmpt 4495    X. cxp 4987   `'ccnv 4988   ran crn 4990    |` cres 4991   "cima 4992   Fun wfun 5572    Fn wfn 5573   -->wf 5574   -onto->wfo 5576   ` cfv 5578  (class class class)co 6281    oFcof 6523    oRcofr 6524   supp csupp 6903    ^m cmap 7422   Fincfn 7518   finSupp cfsupp 7831   CCcc 9493    + caddc 9498    <_ cle 9632    - cmin 9810   NNcn 10543   NN0cn0 10802   Basecbs 14614   .rcmulr 14680   0gc0g 14819    gsumg cgsu 14820   Mndcmnd 15898   Ringcrg 17177   mPwSer cmps 17979   mPoly cmpl 17981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-ofr 6526  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-n0 10803  df-z 10872  df-uz 11093  df-fz 11684  df-fzo 11807  df-seq 12090  df-hash 12388  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-sca 14695  df-vsca 14696  df-tset 14698  df-0g 14821  df-gsum 14822  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-grp 16036  df-minusg 16037  df-cntz 16334  df-cmn 16779  df-abl 16780  df-mgp 17121  df-ur 17133  df-ring 17179  df-psr 17984  df-mpl 17986
This theorem is referenced by:  mplsubrg  18081
  Copyright terms: Public domain W3C validator