MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Unicode version

Theorem mplsubrglem 16457
Description: Lemma for mplsubrg 16458. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplsubg.s  |-  S  =  ( I mPwSer  R )
mplsubg.p  |-  P  =  ( I mPoly  R )
mplsubg.u  |-  U  =  ( Base `  P
)
mplsubg.i  |-  ( ph  ->  I  e.  W )
mpllss.r  |-  ( ph  ->  R  e.  Ring )
mplsubrglem.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplsubrglem.z  |-  .0.  =  ( 0g `  R )
mplsubrglem.p  |-  A  =  (  o F  +  " ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )
mplsubrglem.t  |-  .x.  =  ( .r `  R )
mplsubrglem.x  |-  ( ph  ->  X  e.  U )
mplsubrglem.y  |-  ( ph  ->  Y  e.  U )
Assertion
Ref Expression
mplsubrglem  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  U )
Distinct variable groups:    f, I    R, f    S, f    f, X   
f, Y    .0. , f
Allowed substitution hints:    ph( f)    A( f)    D( f)    P( f)    .x. ( f)    U( f)    W( f)

Proof of Theorem mplsubrglem
Dummy variables  g 
k  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3  |-  S  =  ( I mPwSer  R )
2 eqid 2404 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2404 . . 3  |-  ( .r
`  S )  =  ( .r `  S
)
4 mpllss.r . . 3  |-  ( ph  ->  R  e.  Ring )
5 mplsubg.p . . . . 5  |-  P  =  ( I mPoly  R )
6 mplsubg.u . . . . 5  |-  U  =  ( Base `  P
)
75, 1, 6, 2mplbasss 16451 . . . 4  |-  U  C_  ( Base `  S )
8 mplsubrglem.x . . . 4  |-  ( ph  ->  X  e.  U )
97, 8sseldi 3306 . . 3  |-  ( ph  ->  X  e.  ( Base `  S ) )
10 mplsubrglem.y . . . 4  |-  ( ph  ->  Y  e.  U )
117, 10sseldi 3306 . . 3  |-  ( ph  ->  Y  e.  ( Base `  S ) )
121, 2, 3, 4, 9, 11psrmulcl 16407 . 2  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  ( Base `  S ) )
13 mplsubrglem.p . . . . 5  |-  A  =  (  o F  +  " ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )
14 df-ima 4850 . . . . 5  |-  (  o F  +  " (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )  =  ran  (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )
1513, 14eqtri 2424 . . . 4  |-  A  =  ran  (  o F  +  |`  ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) )
16 mplsubrglem.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
175, 1, 2, 16, 6mplelbas 16449 . . . . . . . 8  |-  ( X  e.  U  <->  ( X  e.  ( Base `  S
)  /\  ( `' X " ( _V  \  {  .0.  } ) )  e.  Fin ) )
1817simprbi 451 . . . . . . 7  |-  ( X  e.  U  ->  ( `' X " ( _V 
\  {  .0.  }
) )  e.  Fin )
198, 18syl 16 . . . . . 6  |-  ( ph  ->  ( `' X "
( _V  \  {  .0.  } ) )  e. 
Fin )
205, 1, 2, 16, 6mplelbas 16449 . . . . . . . 8  |-  ( Y  e.  U  <->  ( Y  e.  ( Base `  S
)  /\  ( `' Y " ( _V  \  {  .0.  } ) )  e.  Fin ) )
2120simprbi 451 . . . . . . 7  |-  ( Y  e.  U  ->  ( `' Y " ( _V 
\  {  .0.  }
) )  e.  Fin )
2210, 21syl 16 . . . . . 6  |-  ( ph  ->  ( `' Y "
( _V  \  {  .0.  } ) )  e. 
Fin )
23 xpfi 7337 . . . . . 6  |-  ( ( ( `' X "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' Y " ( _V  \  {  .0.  } ) )  e.  Fin )  -> 
( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) )  e.  Fin )
2419, 22, 23syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) )  e.  Fin )
25 ofmres 6302 . . . . . . 7  |-  (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )  =  ( f  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  g  e.  ( `' Y " ( _V 
\  {  .0.  }
) )  |->  ( f  o F  +  g ) )
26 ovex 6065 . . . . . . 7  |-  ( f  o F  +  g )  e.  _V
2725, 26fnmpt2i 6379 . . . . . 6  |-  (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )  Fn  ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) )
28 dffn4 5618 . . . . . 6  |-  ( (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )  Fn  ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) )  <->  (  o F  +  |`  ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) ) : ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) -onto-> ran  (  o F  +  |`  ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) )
2927, 28mpbi 200 . . . . 5  |-  (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) : ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) -onto-> ran  (  o F  +  |`  ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )
30 fofi 7351 . . . . 5  |-  ( ( ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) )  e.  Fin  /\  (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) : ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) -onto-> ran  (  o F  +  |`  ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) )  ->  ran  (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )  e.  Fin )
3124, 29, 30sylancl 644 . . . 4  |-  ( ph  ->  ran  (  o F  +  |`  ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) )  e.  Fin )
3215, 31syl5eqel 2488 . . 3  |-  ( ph  ->  A  e.  Fin )
33 eqid 2404 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
34 mplsubrglem.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
351, 33, 34, 2, 12psrelbas 16399 . . . 4  |-  ( ph  ->  ( X ( .r
`  S ) Y ) : D --> ( Base `  R ) )
36 mplsubrglem.t . . . . . 6  |-  .x.  =  ( .r `  R )
379adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  X  e.  ( Base `  S )
)
3811adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  Y  e.  ( Base `  S )
)
39 eldifi 3429 . . . . . . 7  |-  ( k  e.  ( D  \  A )  ->  k  e.  D )
4039adantl 453 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  k  e.  D )
411, 2, 36, 3, 34, 37, 38, 40psrmulval 16405 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( ( X ( .r `  S ) Y ) `
 k )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  o R  <_ 
k }  |->  ( ( X `  x ) 
.x.  ( Y `  ( k  o F  -  x ) ) ) ) ) )
424ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  R  e.  Ring )
435, 33, 6, 34, 10mplelf 16452 . . . . . . . . . . . 12  |-  ( ph  ->  Y : D --> ( Base `  R ) )
4443ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  Y : D --> ( Base `  R ) )
45 ssrab2 3388 . . . . . . . . . . . 12  |-  { y  e.  D  |  y  o R  <_  k }  C_  D
46 mplsubg.i . . . . . . . . . . . . . 14  |-  ( ph  ->  I  e.  W )
4746ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  I  e.  W )
4840adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
k  e.  D )
49 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  x  e.  { y  e.  D  |  y  o R  <_  k } )
50 eqid 2404 . . . . . . . . . . . . . 14  |-  { y  e.  D  |  y  o R  <_  k }  =  { y  e.  D  |  y  o R  <_  k }
5134, 50psrbagconcl 16393 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  k  e.  D  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  ( k  o F  -  x
)  e.  { y  e.  D  |  y  o R  <_  k } )
5247, 48, 49, 51syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( k  o F  -  x )  e. 
{ y  e.  D  |  y  o R  <_  k } )
5345, 52sseldi 3306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( k  o F  -  x )  e.  D )
5444, 53ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( Y `  (
k  o F  -  x ) )  e.  ( Base `  R
) )
5533, 36, 16rnglz 15655 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( Y `  ( k  o F  -  x
) )  e.  (
Base `  R )
)  ->  (  .0.  .x.  ( Y `  (
k  o F  -  x ) ) )  =  .0.  )
5642, 54, 55syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
(  .0.  .x.  ( Y `  ( k  o F  -  x
) ) )  =  .0.  )
57 oveq1 6047 . . . . . . . . . 10  |-  ( ( X `  x )  =  .0.  ->  (
( X `  x
)  .x.  ( Y `  ( k  o F  -  x ) ) )  =  (  .0. 
.x.  ( Y `  ( k  o F  -  x ) ) ) )
5857eqeq1d 2412 . . . . . . . . 9  |-  ( ( X `  x )  =  .0.  ->  (
( ( X `  x )  .x.  ( Y `  ( k  o F  -  x
) ) )  =  .0.  <->  (  .0.  .x.  ( Y `  ( k  o F  -  x
) ) )  =  .0.  ) )
5956, 58syl5ibrcom 214 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x )  =  .0. 
->  ( ( X `  x )  .x.  ( Y `  ( k  o F  -  x
) ) )  =  .0.  ) )
605, 33, 6, 34, 8mplelf 16452 . . . . . . . . . . . 12  |-  ( ph  ->  X : D --> ( Base `  R ) )
6160ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  X : D --> ( Base `  R ) )
6245, 49sseldi 3306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  x  e.  D )
6361, 62ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( X `  x
)  e.  ( Base `  R ) )
6433, 36, 16rngrz 15656 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( X `  x )  e.  ( Base `  R
) )  ->  (
( X `  x
)  .x.  .0.  )  =  .0.  )
6542, 63, 64syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x )  .x.  .0.  )  =  .0.  )
66 oveq2 6048 . . . . . . . . . 10  |-  ( ( Y `  ( k  o F  -  x
) )  =  .0. 
->  ( ( X `  x )  .x.  ( Y `  ( k  o F  -  x
) ) )  =  ( ( X `  x )  .x.  .0.  ) )
6766eqeq1d 2412 . . . . . . . . 9  |-  ( ( Y `  ( k  o F  -  x
) )  =  .0. 
->  ( ( ( X `
 x )  .x.  ( Y `  ( k  o F  -  x
) ) )  =  .0.  <->  ( ( X `
 x )  .x.  .0.  )  =  .0.  ) )
6865, 67syl5ibrcom 214 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( Y `  ( k  o F  -  x ) )  =  .0.  ->  (
( X `  x
)  .x.  ( Y `  ( k  o F  -  x ) ) )  =  .0.  )
)
6934psrbagf 16387 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  x  e.  D )  ->  x : I --> NN0 )
7047, 62, 69syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  x : I --> NN0 )
7170ffvelrnda 5829 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  n  e.  I )  ->  (
x `  n )  e.  NN0 )
7234psrbagf 16387 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  k  e.  D )  ->  k : I --> NN0 )
7347, 48, 72syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
k : I --> NN0 )
7473ffvelrnda 5829 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  n  e.  I )  ->  (
k `  n )  e.  NN0 )
75 nn0cn 10187 . . . . . . . . . . . . . . . . 17  |-  ( ( x `  n )  e.  NN0  ->  ( x `
 n )  e.  CC )
76 nn0cn 10187 . . . . . . . . . . . . . . . . 17  |-  ( ( k `  n )  e.  NN0  ->  ( k `
 n )  e.  CC )
77 pncan3 9269 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x `  n
)  e.  CC  /\  ( k `  n
)  e.  CC )  ->  ( ( x `
 n )  +  ( ( k `  n )  -  (
x `  n )
) )  =  ( k `  n ) )
7875, 76, 77syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( x `  n
)  e.  NN0  /\  ( k `  n
)  e.  NN0 )  ->  ( ( x `  n )  +  ( ( k `  n
)  -  ( x `
 n ) ) )  =  ( k `
 n ) )
7971, 74, 78syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  n  e.  I )  ->  (
( x `  n
)  +  ( ( k `  n )  -  ( x `  n ) ) )  =  ( k `  n ) )
8079mpteq2dva 4255 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( n  e.  I  |->  ( ( x `  n )  +  ( ( k `  n
)  -  ( x `
 n ) ) ) )  =  ( n  e.  I  |->  ( k `  n ) ) )
81 ovex 6065 . . . . . . . . . . . . . . . 16  |-  ( ( k `  n )  -  ( x `  n ) )  e. 
_V
8281a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  n  e.  I )  ->  (
( k `  n
)  -  ( x `
 n ) )  e.  _V )
8370feqmptd 5738 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  x  =  ( n  e.  I  |->  ( x `
 n ) ) )
8473feqmptd 5738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
k  =  ( n  e.  I  |->  ( k `
 n ) ) )
8547, 74, 71, 84, 83offval2 6281 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( k  o F  -  x )  =  ( n  e.  I  |->  ( ( k `  n )  -  (
x `  n )
) ) )
8647, 71, 82, 83, 85offval2 6281 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( x  o F  +  ( k  o F  -  x ) )  =  ( n  e.  I  |->  ( ( x `  n )  +  ( ( k `
 n )  -  ( x `  n
) ) ) ) )
8780, 86, 843eqtr4d 2446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( x  o F  +  ( k  o F  -  x ) )  =  k )
88 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
k  e.  ( D 
\  A ) )
8987, 88eqeltrd 2478 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( x  o F  +  ( k  o F  -  x ) )  e.  ( D 
\  A ) )
9089eldifbd 3293 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  -.  ( x  o F  +  ( k  o F  -  x ) )  e.  A )
91 ovres 6172 . . . . . . . . . . . 12  |-  ( ( x  e.  ( `' X " ( _V 
\  {  .0.  }
) )  /\  (
k  o F  -  x )  e.  ( `' Y " ( _V 
\  {  .0.  }
) ) )  -> 
( x (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) ( k  o F  -  x ) )  =  ( x  o F  +  ( k  o F  -  x ) ) )
92 fnovrn 6180 . . . . . . . . . . . . . 14  |-  ( ( (  o F  +  |`  ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )  Fn  ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) )  /\  x  e.  ( `' X " ( _V  \  {  .0.  } ) )  /\  ( k  o F  -  x )  e.  ( `' Y " ( _V  \  {  .0.  } ) ) )  ->  ( x (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) ( k  o F  -  x ) )  e.  ran  (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) )
9392, 15syl6eleqr 2495 . . . . . . . . . . . . 13  |-  ( ( (  o F  +  |`  ( ( `' X " ( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )  Fn  ( ( `' X " ( _V 
\  {  .0.  }
) )  X.  ( `' Y " ( _V 
\  {  .0.  }
) ) )  /\  x  e.  ( `' X " ( _V  \  {  .0.  } ) )  /\  ( k  o F  -  x )  e.  ( `' Y " ( _V  \  {  .0.  } ) ) )  ->  ( x (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) ( k  o F  -  x ) )  e.  A )
9427, 93mp3an1 1266 . . . . . . . . . . . 12  |-  ( ( x  e.  ( `' X " ( _V 
\  {  .0.  }
) )  /\  (
k  o F  -  x )  e.  ( `' Y " ( _V 
\  {  .0.  }
) ) )  -> 
( x (  o F  +  |`  (
( `' X "
( _V  \  {  .0.  } ) )  X.  ( `' Y "
( _V  \  {  .0.  } ) ) ) ) ( k  o F  -  x ) )  e.  A )
9591, 94eqeltrrd 2479 . . . . . . . . . . 11  |-  ( ( x  e.  ( `' X " ( _V 
\  {  .0.  }
) )  /\  (
k  o F  -  x )  e.  ( `' Y " ( _V 
\  {  .0.  }
) ) )  -> 
( x  o F  +  ( k  o F  -  x ) )  e.  A )
9690, 95nsyl 115 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  ->  -.  ( x  e.  ( `' X " ( _V 
\  {  .0.  }
) )  /\  (
k  o F  -  x )  e.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) )
97 ianor 475 . . . . . . . . . 10  |-  ( -.  ( x  e.  ( `' X " ( _V 
\  {  .0.  }
) )  /\  (
k  o F  -  x )  e.  ( `' Y " ( _V 
\  {  .0.  }
) ) )  <->  ( -.  x  e.  ( `' X " ( _V  \  {  .0.  } ) )  \/  -.  ( k  o F  -  x
)  e.  ( `' Y " ( _V 
\  {  .0.  }
) ) ) )
9896, 97sylib 189 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( -.  x  e.  ( `' X "
( _V  \  {  .0.  } ) )  \/ 
-.  ( k  o F  -  x )  e.  ( `' Y " ( _V  \  {  .0.  } ) ) ) )
99 eldif 3290 . . . . . . . . . . . . 13  |-  ( x  e.  ( D  \ 
( `' X "
( _V  \  {  .0.  } ) ) )  <-> 
( x  e.  D  /\  -.  x  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ) )
10099baib 872 . . . . . . . . . . . 12  |-  ( x  e.  D  ->  (
x  e.  ( D 
\  ( `' X " ( _V  \  {  .0.  } ) ) )  <->  -.  x  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ) )
10162, 100syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( x  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) )  <->  -.  x  e.  ( `' X "
( _V  \  {  .0.  } ) ) ) )
102 ssid 3327 . . . . . . . . . . . . . 14  |-  ( `' X " ( _V 
\  {  .0.  }
) )  C_  ( `' X " ( _V 
\  {  .0.  }
) )
103102a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( `' X "
( _V  \  {  .0.  } ) )  C_  ( `' X " ( _V 
\  {  .0.  }
) ) )
10461, 103suppssr 5823 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  x  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  ( X `  x )  =  .0.  )
105104ex 424 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( x  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) )  -> 
( X `  x
)  =  .0.  )
)
106101, 105sylbird 227 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( -.  x  e.  ( `' X "
( _V  \  {  .0.  } ) )  -> 
( X `  x
)  =  .0.  )
)
107 eldif 3290 . . . . . . . . . . . . 13  |-  ( ( k  o F  -  x )  e.  ( D  \  ( `' Y " ( _V 
\  {  .0.  }
) ) )  <->  ( (
k  o F  -  x )  e.  D  /\  -.  ( k  o F  -  x )  e.  ( `' Y " ( _V  \  {  .0.  } ) ) ) )
108107baib 872 . . . . . . . . . . . 12  |-  ( ( k  o F  -  x )  e.  D  ->  ( ( k  o F  -  x )  e.  ( D  \ 
( `' Y "
( _V  \  {  .0.  } ) ) )  <->  -.  ( k  o F  -  x )  e.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )
10953, 108syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( k  o F  -  x )  e.  ( D  \ 
( `' Y "
( _V  \  {  .0.  } ) ) )  <->  -.  ( k  o F  -  x )  e.  ( `' Y "
( _V  \  {  .0.  } ) ) ) )
110 ssid 3327 . . . . . . . . . . . . . 14  |-  ( `' Y " ( _V 
\  {  .0.  }
) )  C_  ( `' Y " ( _V 
\  {  .0.  }
) )
111110a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( `' Y "
( _V  \  {  .0.  } ) )  C_  ( `' Y " ( _V 
\  {  .0.  }
) ) )
11244, 111suppssr 5823 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( D  \  A ) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  /\  ( k  o F  -  x
)  e.  ( D 
\  ( `' Y " ( _V  \  {  .0.  } ) ) ) )  ->  ( Y `  ( k  o F  -  x ) )  =  .0.  )
113112ex 424 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( k  o F  -  x )  e.  ( D  \ 
( `' Y "
( _V  \  {  .0.  } ) ) )  ->  ( Y `  ( k  o F  -  x ) )  =  .0.  ) )
114109, 113sylbird 227 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( -.  ( k  o F  -  x
)  e.  ( `' Y " ( _V 
\  {  .0.  }
) )  ->  ( Y `  ( k  o F  -  x
) )  =  .0.  ) )
115106, 114orim12d 812 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( -.  x  e.  ( `' X "
( _V  \  {  .0.  } ) )  \/ 
-.  ( k  o F  -  x )  e.  ( `' Y " ( _V  \  {  .0.  } ) ) )  ->  ( ( X `
 x )  =  .0.  \/  ( Y `
 ( k  o F  -  x ) )  =  .0.  )
) )
11698, 115mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x )  =  .0. 
\/  ( Y `  ( k  o F  -  x ) )  =  .0.  ) )
11759, 68, 116mpjaod 371 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( D  \  A
) )  /\  x  e.  { y  e.  D  |  y  o R  <_  k } )  -> 
( ( X `  x )  .x.  ( Y `  ( k  o F  -  x
) ) )  =  .0.  )
118117mpteq2dva 4255 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `  x ) 
.x.  ( Y `  ( k  o F  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  .0.  ) )
119118oveq2d 6056 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  ( ( X `
 x )  .x.  ( Y `  ( k  o F  -  x
) ) ) ) )  =  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  .0.  ) )
)
1204adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  R  e.  Ring )
121 rngmnd 15628 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
122120, 121syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  R  e.  Mnd )
12334psrbaglefi 16392 . . . . . . 7  |-  ( ( I  e.  W  /\  k  e.  D )  ->  { y  e.  D  |  y  o R  <_  k }  e.  Fin )
12446, 39, 123syl2an 464 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  { y  e.  D  |  y  o R  <_  k }  e.  Fin )
12516gsumz 14736 . . . . . 6  |-  ( ( R  e.  Mnd  /\  { y  e.  D  | 
y  o R  <_ 
k }  e.  Fin )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  .0.  ) )  =  .0.  )
126122, 124, 125syl2anc 643 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  o R  <_  k }  |->  .0.  ) )  =  .0.  )
12741, 119, 1263eqtrd 2440 . . . 4  |-  ( (
ph  /\  k  e.  ( D  \  A ) )  ->  ( ( X ( .r `  S ) Y ) `
 k )  =  .0.  )
12835, 127suppss 5822 . . 3  |-  ( ph  ->  ( `' ( X ( .r `  S
) Y ) "
( _V  \  {  .0.  } ) )  C_  A )
129 ssfi 7288 . . 3  |-  ( ( A  e.  Fin  /\  ( `' ( X ( .r `  S ) Y ) " ( _V  \  {  .0.  }
) )  C_  A
)  ->  ( `' ( X ( .r `  S ) Y )
" ( _V  \  {  .0.  } ) )  e.  Fin )
13032, 128, 129syl2anc 643 . 2  |-  ( ph  ->  ( `' ( X ( .r `  S
) Y ) "
( _V  \  {  .0.  } ) )  e. 
Fin )
1315, 1, 2, 16, 6mplelbas 16449 . 2  |-  ( ( X ( .r `  S ) Y )  e.  U  <->  ( ( X ( .r `  S ) Y )  e.  ( Base `  S
)  /\  ( `' ( X ( .r `  S ) Y )
" ( _V  \  {  .0.  } ) )  e.  Fin ) )
13212, 130, 131sylanbrc 646 1  |-  ( ph  ->  ( X ( .r
`  S ) Y )  e.  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {crab 2670   _Vcvv 2916    \ cdif 3277    C_ wss 3280   {csn 3774   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   ran crn 4838    |` cres 4839   "cima 4840    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040    o Fcof 6262    o Rcofr 6263    ^m cmap 6977   Fincfn 7068   CCcc 8944    + caddc 8949    <_ cle 9077    - cmin 9247   NNcn 9956   NN0cn0 10177   Basecbs 13424   .rcmulr 13485   0gc0g 13678    gsumg cgsu 13679   Mndcmnd 14639   Ringcrg 15615   mPwSer cmps 16361   mPoly cmpl 16363
This theorem is referenced by:  mplsubrg  16458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ofr 6265  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-0g 13682  df-gsum 13683  df-mnd 14645  df-grp 14767  df-minusg 14768  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-psr 16372  df-mpl 16374
  Copyright terms: Public domain W3C validator