MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubglem Structured version   Visualization version   Unicode version

Theorem mplsubglem 18735
Description: If  A is an ideal of sets (a nonempty collection closed under subset and binary union) of the set  D of finite bags (the primary applications being  A  =  Fin and  A  =  ~P B for some  B), then the set of all power series whose coefficient functions are supported on an element of  A is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s  |-  S  =  ( I mPwSer  R )
mplsubglem.b  |-  B  =  ( Base `  S
)
mplsubglem.z  |-  .0.  =  ( 0g `  R )
mplsubglem.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplsubglem.i  |-  ( ph  ->  I  e.  W )
mplsubglem.0  |-  ( ph  -> 
(/)  e.  A )
mplsubglem.a  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  u.  y
)  e.  A )
mplsubglem.y  |-  ( (
ph  /\  ( x  e.  A  /\  y  C_  x ) )  -> 
y  e.  A )
mplsubglem.u  |-  ( ph  ->  U  =  { g  e.  B  |  ( g supp  .0.  )  e.  A } )
mplsubglem.r  |-  ( ph  ->  R  e.  Grp )
Assertion
Ref Expression
mplsubglem  |-  ( ph  ->  U  e.  (SubGrp `  S ) )
Distinct variable groups:    f, g, x, y,  .0.    A, f, g, x, y    B, f, g    D, g    f, I    ph, x, y    S, f, g, y
Allowed substitution hints:    ph( f, g)    B( x, y)    D( x, y, f)    R( x, y, f, g)    S( x)    U( x, y, f, g)    I( x, y, g)    W( x, y, f, g)

Proof of Theorem mplsubglem
Dummy variables  k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.u . . 3  |-  ( ph  ->  U  =  { g  e.  B  |  ( g supp  .0.  )  e.  A } )
2 ssrab2 3500 . . 3  |-  { g  e.  B  |  ( g supp  .0.  )  e.  A }  C_  B
31, 2syl6eqss 3468 . 2  |-  ( ph  ->  U  C_  B )
4 mplsubglem.s . . . . 5  |-  S  =  ( I mPwSer  R )
5 mplsubglem.i . . . . 5  |-  ( ph  ->  I  e.  W )
6 mplsubglem.r . . . . 5  |-  ( ph  ->  R  e.  Grp )
7 mplsubglem.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
8 mplsubglem.z . . . . 5  |-  .0.  =  ( 0g `  R )
9 mplsubglem.b . . . . 5  |-  B  =  ( Base `  S
)
104, 5, 6, 7, 8, 9psr0cl 18695 . . . 4  |-  ( ph  ->  ( D  X.  {  .0.  } )  e.  B
)
11 eqid 2471 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
1211, 8grpidcl 16772 . . . . . . . 8  |-  ( R  e.  Grp  ->  .0.  e.  ( Base `  R
) )
13 fconst6g 5785 . . . . . . . 8  |-  (  .0. 
e.  ( Base `  R
)  ->  ( D  X.  {  .0.  } ) : D --> ( Base `  R ) )
146, 12, 133syl 18 . . . . . . 7  |-  ( ph  ->  ( D  X.  {  .0.  } ) : D --> ( Base `  R )
)
15 eldifi 3544 . . . . . . . . 9  |-  ( u  e.  ( D  \  (/) )  ->  u  e.  D )
16 fvex 5889 . . . . . . . . . . 11  |-  ( 0g
`  R )  e. 
_V
178, 16eqeltri 2545 . . . . . . . . . 10  |-  .0.  e.  _V
1817fvconst2 6136 . . . . . . . . 9  |-  ( u  e.  D  ->  (
( D  X.  {  .0.  } ) `  u
)  =  .0.  )
1915, 18syl 17 . . . . . . . 8  |-  ( u  e.  ( D  \  (/) )  ->  ( ( D  X.  {  .0.  }
) `  u )  =  .0.  )
2019adantl 473 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( D  \  (/) ) )  ->  ( ( D  X.  {  .0.  }
) `  u )  =  .0.  )
2114, 20suppss 6964 . . . . . 6  |-  ( ph  ->  ( ( D  X.  {  .0.  } ) supp  .0.  )  C_  (/) )
22 ss0 3768 . . . . . 6  |-  ( ( ( D  X.  {  .0.  } ) supp  .0.  )  C_  (/)  ->  ( ( D  X.  {  .0.  }
) supp  .0.  )  =  (/) )
2321, 22syl 17 . . . . 5  |-  ( ph  ->  ( ( D  X.  {  .0.  } ) supp  .0.  )  =  (/) )
24 mplsubglem.0 . . . . 5  |-  ( ph  -> 
(/)  e.  A )
2523, 24eqeltrd 2549 . . . 4  |-  ( ph  ->  ( ( D  X.  {  .0.  } ) supp  .0.  )  e.  A )
261eleq2d 2534 . . . . 5  |-  ( ph  ->  ( ( D  X.  {  .0.  } )  e.  U  <->  ( D  X.  {  .0.  } )  e. 
{ g  e.  B  |  ( g supp  .0.  )  e.  A }
) )
27 oveq1 6315 . . . . . . 7  |-  ( g  =  ( D  X.  {  .0.  } )  -> 
( g supp  .0.  )  =  ( ( D  X.  {  .0.  }
) supp  .0.  ) )
2827eleq1d 2533 . . . . . 6  |-  ( g  =  ( D  X.  {  .0.  } )  -> 
( ( g supp  .0.  )  e.  A  <->  ( ( D  X.  {  .0.  }
) supp  .0.  )  e.  A ) )
2928elrab 3184 . . . . 5  |-  ( ( D  X.  {  .0.  } )  e.  { g  e.  B  |  ( g supp  .0.  )  e.  A }  <->  ( ( D  X.  {  .0.  }
)  e.  B  /\  ( ( D  X.  {  .0.  } ) supp  .0.  )  e.  A )
)
3026, 29syl6bb 269 . . . 4  |-  ( ph  ->  ( ( D  X.  {  .0.  } )  e.  U  <->  ( ( D  X.  {  .0.  }
)  e.  B  /\  ( ( D  X.  {  .0.  } ) supp  .0.  )  e.  A )
) )
3110, 25, 30mpbir2and 936 . . 3  |-  ( ph  ->  ( D  X.  {  .0.  } )  e.  U
)
32 ne0i 3728 . . 3  |-  ( ( D  X.  {  .0.  } )  e.  U  ->  U  =/=  (/) )
3331, 32syl 17 . 2  |-  ( ph  ->  U  =/=  (/) )
34 eqid 2471 . . . . . . 7  |-  ( +g  `  S )  =  ( +g  `  S )
356ad2antrr 740 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  R  e.  Grp )
361eleq2d 2534 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  U  <->  u  e.  { g  e.  B  |  ( g supp 
.0.  )  e.  A } ) )
37 oveq1 6315 . . . . . . . . . . . . 13  |-  ( g  =  u  ->  (
g supp  .0.  )  =  ( u supp  .0.  ) )
3837eleq1d 2533 . . . . . . . . . . . 12  |-  ( g  =  u  ->  (
( g supp  .0.  )  e.  A  <->  ( u supp  .0.  )  e.  A )
)
3938elrab 3184 . . . . . . . . . . 11  |-  ( u  e.  { g  e.  B  |  ( g supp 
.0.  )  e.  A } 
<->  ( u  e.  B  /\  ( u supp  .0.  )  e.  A ) )
4036, 39syl6bb 269 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  U  <->  ( u  e.  B  /\  ( u supp  .0.  )  e.  A ) ) )
4140biimpa 492 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  U )  ->  (
u  e.  B  /\  ( u supp  .0.  )  e.  A ) )
4241simpld 466 . . . . . . . 8  |-  ( (
ph  /\  u  e.  U )  ->  u  e.  B )
4342adantr 472 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  u  e.  B )
441adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  U )  ->  U  =  { g  e.  B  |  ( g supp  .0.  )  e.  A }
)
4544eleq2d 2534 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  U )  ->  (
v  e.  U  <->  v  e.  { g  e.  B  | 
( g supp  .0.  )  e.  A } ) )
46 oveq1 6315 . . . . . . . . . . . 12  |-  ( g  =  v  ->  (
g supp  .0.  )  =  ( v supp  .0.  )
)
4746eleq1d 2533 . . . . . . . . . . 11  |-  ( g  =  v  ->  (
( g supp  .0.  )  e.  A  <->  ( v supp  .0.  )  e.  A )
)
4847elrab 3184 . . . . . . . . . 10  |-  ( v  e.  { g  e.  B  |  ( g supp 
.0.  )  e.  A } 
<->  ( v  e.  B  /\  ( v supp  .0.  )  e.  A ) )
4945, 48syl6bb 269 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  U )  ->  (
v  e.  U  <->  ( v  e.  B  /\  (
v supp  .0.  )  e.  A ) ) )
5049biimpa 492 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
v  e.  B  /\  ( v supp  .0.  )  e.  A ) )
5150simpld 466 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  v  e.  B )
524, 9, 34, 35, 43, 51psraddcl 18684 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
u ( +g  `  S
) v )  e.  B )
53 ovex 6336 . . . . . . . 8  |-  ( ( u ( +g  `  S
) v ) supp  .0.  )  e.  _V
5453a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
( u ( +g  `  S ) v ) supp 
.0.  )  e.  _V )
5541simprd 470 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  U )  ->  (
u supp  .0.  )  e.  A )
5655adantr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
u supp  .0.  )  e.  A )
5750simprd 470 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
v supp  .0.  )  e.  A )
58 mplsubglem.a . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x  u.  y
)  e.  A )
5958ralrimivva 2814 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x  u.  y
)  e.  A )
6059ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  A. x  e.  A  A. y  e.  A  ( x  u.  y )  e.  A
)
61 uneq1 3572 . . . . . . . . . . 11  |-  ( x  =  ( u supp  .0.  )  ->  ( x  u.  y )  =  ( ( u supp  .0.  )  u.  y ) )
6261eleq1d 2533 . . . . . . . . . 10  |-  ( x  =  ( u supp  .0.  )  ->  ( ( x  u.  y )  e.  A  <->  ( ( u supp 
.0.  )  u.  y
)  e.  A ) )
63 uneq2 3573 . . . . . . . . . . 11  |-  ( y  =  ( v supp  .0.  )  ->  ( ( u supp 
.0.  )  u.  y
)  =  ( ( u supp  .0.  )  u.  ( v supp  .0.  )
) )
6463eleq1d 2533 . . . . . . . . . 10  |-  ( y  =  ( v supp  .0.  )  ->  ( ( ( u supp  .0.  )  u.  y )  e.  A  <->  ( ( u supp  .0.  )  u.  ( v supp  .0.  )
)  e.  A ) )
6562, 64rspc2va 3148 . . . . . . . . 9  |-  ( ( ( ( u supp  .0.  )  e.  A  /\  ( v supp  .0.  )  e.  A )  /\  A. x  e.  A  A. y  e.  A  (
x  u.  y )  e.  A )  -> 
( ( u supp  .0.  )  u.  ( v supp  .0.  ) )  e.  A
)
6656, 57, 60, 65syl21anc 1291 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
( u supp  .0.  )  u.  ( v supp  .0.  )
)  e.  A )
67 mplsubglem.y . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  A  /\  y  C_  x ) )  -> 
y  e.  A )
6867expr 626 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
y  C_  x  ->  y  e.  A ) )
6968alrimiv 1781 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  A. y
( y  C_  x  ->  y  e.  A ) )
7069ralrimiva 2809 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. y ( y  C_  x  ->  y  e.  A
) )
7170ad2antrr 740 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  A. x  e.  A  A. y
( y  C_  x  ->  y  e.  A ) )
72 sseq2 3440 . . . . . . . . . . 11  |-  ( x  =  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )  ->  ( y  C_  x  <->  y 
C_  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )
) )
7372imbi1d 324 . . . . . . . . . 10  |-  ( x  =  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )  ->  ( ( y  C_  x  ->  y  e.  A
)  <->  ( y  C_  ( ( u supp  .0.  )  u.  ( v supp  .0.  ) )  ->  y  e.  A ) ) )
7473albidv 1775 . . . . . . . . 9  |-  ( x  =  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )  ->  ( A. y ( y  C_  x  ->  y  e.  A )  <->  A. y
( y  C_  (
( u supp  .0.  )  u.  ( v supp  .0.  )
)  ->  y  e.  A ) ) )
7574rspcv 3132 . . . . . . . 8  |-  ( ( ( u supp  .0.  )  u.  ( v supp  .0.  )
)  e.  A  -> 
( A. x  e.  A  A. y ( y  C_  x  ->  y  e.  A )  ->  A. y ( y  C_  ( ( u supp  .0.  )  u.  ( v supp  .0.  ) )  ->  y  e.  A ) ) )
7666, 71, 75sylc 61 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  A. y
( y  C_  (
( u supp  .0.  )  u.  ( v supp  .0.  )
)  ->  y  e.  A ) )
774, 11, 7, 9, 52psrelbas 18680 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
u ( +g  `  S
) v ) : D --> ( Base `  R
) )
78 eqid 2471 . . . . . . . . . . . 12  |-  ( +g  `  R )  =  ( +g  `  R )
794, 9, 78, 34, 43, 51psradd 18683 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
u ( +g  `  S
) v )  =  ( u  oF ( +g  `  R
) v ) )
8079fveq1d 5881 . . . . . . . . . 10  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
( u ( +g  `  S ) v ) `
 k )  =  ( ( u  oF ( +g  `  R
) v ) `  k ) )
8180adantr 472 . . . . . . . . 9  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
( ( u ( +g  `  S ) v ) `  k
)  =  ( ( u  oF ( +g  `  R ) v ) `  k
) )
82 eldifi 3544 . . . . . . . . . 10  |-  ( k  e.  ( D  \ 
( ( u supp  .0.  )  u.  ( v supp  .0.  ) ) )  -> 
k  e.  D )
834, 11, 7, 9, 42psrelbas 18680 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  U )  ->  u : D --> ( Base `  R
) )
8483adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  u : D --> ( Base `  R
) )
8584ffnd 5740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  u  Fn  D )
864, 11, 7, 9, 51psrelbas 18680 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  v : D --> ( Base `  R
) )
8786ffnd 5740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  v  Fn  D )
88 ovex 6336 . . . . . . . . . . . . 13  |-  ( NN0 
^m  I )  e. 
_V
897, 88rabex2 4552 . . . . . . . . . . . 12  |-  D  e. 
_V
9089a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  D  e.  _V )
91 inidm 3632 . . . . . . . . . . 11  |-  ( D  i^i  D )  =  D
92 eqidd 2472 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  D )  ->  (
u `  k )  =  ( u `  k ) )
93 eqidd 2472 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  D )  ->  (
v `  k )  =  ( v `  k ) )
9485, 87, 90, 90, 91, 92, 93ofval 6559 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  D )  ->  (
( u  oF ( +g  `  R
) v ) `  k )  =  ( ( u `  k
) ( +g  `  R
) ( v `  k ) ) )
9582, 94sylan2 482 . . . . . . . . 9  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
( ( u  oF ( +g  `  R
) v ) `  k )  =  ( ( u `  k
) ( +g  `  R
) ( v `  k ) ) )
96 ssun1 3588 . . . . . . . . . . . . . 14  |-  ( u supp 
.0.  )  C_  (
( u supp  .0.  )  u.  ( v supp  .0.  )
)
97 sscon 3556 . . . . . . . . . . . . . 14  |-  ( ( u supp  .0.  )  C_  ( ( u supp  .0.  )  u.  ( v supp  .0.  ) )  ->  ( D  \  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )
)  C_  ( D  \  ( u supp  .0.  )
) )
9896, 97ax-mp 5 . . . . . . . . . . . . 13  |-  ( D 
\  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )
)  C_  ( D  \  ( u supp  .0.  )
)
9998sseli 3414 . . . . . . . . . . . 12  |-  ( k  e.  ( D  \ 
( ( u supp  .0.  )  u.  ( v supp  .0.  ) ) )  -> 
k  e.  ( D 
\  ( u supp  .0.  ) ) )
100 ssid 3437 . . . . . . . . . . . . . . 15  |-  ( u supp 
.0.  )  C_  (
u supp  .0.  )
101100a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  U )  ->  (
u supp  .0.  )  C_  ( u supp  .0.  ) )
10289a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  U )  ->  D  e.  _V )
10317a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  U )  ->  .0.  e.  _V )
10483, 101, 102, 103suppssr 6965 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( u `  k )  =  .0.  )
105104adantlr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( u `  k )  =  .0.  )
10699, 105sylan2 482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
( u `  k
)  =  .0.  )
107 ssun2 3589 . . . . . . . . . . . . . 14  |-  ( v supp 
.0.  )  C_  (
( u supp  .0.  )  u.  ( v supp  .0.  )
)
108 sscon 3556 . . . . . . . . . . . . . 14  |-  ( ( v supp  .0.  )  C_  ( ( u supp  .0.  )  u.  ( v supp  .0.  ) )  ->  ( D  \  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )
)  C_  ( D  \  ( v supp  .0.  )
) )
109107, 108ax-mp 5 . . . . . . . . . . . . 13  |-  ( D 
\  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )
)  C_  ( D  \  ( v supp  .0.  )
)
110109sseli 3414 . . . . . . . . . . . 12  |-  ( k  e.  ( D  \ 
( ( u supp  .0.  )  u.  ( v supp  .0.  ) ) )  -> 
k  e.  ( D 
\  ( v supp  .0.  ) ) )
111 ssid 3437 . . . . . . . . . . . . . 14  |-  ( v supp 
.0.  )  C_  (
v supp  .0.  )
112111a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
v supp  .0.  )  C_  ( v supp  .0.  )
)
11317a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  .0.  e.  _V )
11486, 112, 90, 113suppssr 6965 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
v supp  .0.  ) )
)  ->  ( v `  k )  =  .0.  )
115110, 114sylan2 482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
( v `  k
)  =  .0.  )
116106, 115oveq12d 6326 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
( ( u `  k ) ( +g  `  R ) ( v `
 k ) )  =  (  .0.  ( +g  `  R )  .0.  ) )
11711, 78, 8grplid 16774 . . . . . . . . . . . . 13  |-  ( ( R  e.  Grp  /\  .0.  e.  ( Base `  R
) )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
11812, 117mpdan 681 . . . . . . . . . . . 12  |-  ( R  e.  Grp  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
11935, 118syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
120119adantr 472 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
121116, 120eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
( ( u `  k ) ( +g  `  R ) ( v `
 k ) )  =  .0.  )
12281, 95, 1213eqtrd 2509 . . . . . . . 8  |-  ( ( ( ( ph  /\  u  e.  U )  /\  v  e.  U
)  /\  k  e.  ( D  \  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) ) )  -> 
( ( u ( +g  `  S ) v ) `  k
)  =  .0.  )
12377, 122suppss 6964 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
( u ( +g  `  S ) v ) supp 
.0.  )  C_  (
( u supp  .0.  )  u.  ( v supp  .0.  )
) )
124 sseq1 3439 . . . . . . . . 9  |-  ( y  =  ( ( u ( +g  `  S
) v ) supp  .0.  )  ->  ( y  C_  ( ( u supp  .0.  )  u.  ( v supp  .0.  ) )  <->  ( (
u ( +g  `  S
) v ) supp  .0.  )  C_  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )
) )
125 eleq1 2537 . . . . . . . . 9  |-  ( y  =  ( ( u ( +g  `  S
) v ) supp  .0.  )  ->  ( y  e.  A  <->  ( ( u ( +g  `  S
) v ) supp  .0.  )  e.  A )
)
126124, 125imbi12d 327 . . . . . . . 8  |-  ( y  =  ( ( u ( +g  `  S
) v ) supp  .0.  )  ->  ( ( y 
C_  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )  ->  y  e.  A )  <-> 
( ( ( u ( +g  `  S
) v ) supp  .0.  )  C_  ( ( u supp 
.0.  )  u.  (
v supp  .0.  ) )  ->  ( ( u ( +g  `  S ) v ) supp  .0.  )  e.  A ) ) )
127126spcgv 3120 . . . . . . 7  |-  ( ( ( u ( +g  `  S ) v ) supp 
.0.  )  e.  _V  ->  ( A. y ( y  C_  ( (
u supp  .0.  )  u.  ( v supp  .0.  )
)  ->  y  e.  A )  ->  (
( ( u ( +g  `  S ) v ) supp  .0.  )  C_  ( ( u supp  .0.  )  u.  ( v supp  .0.  ) )  ->  (
( u ( +g  `  S ) v ) supp 
.0.  )  e.  A
) ) )
12854, 76, 123, 127syl3c 62 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
( u ( +g  `  S ) v ) supp 
.0.  )  e.  A
)
1291ad2antrr 740 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  U  =  { g  e.  B  |  ( g supp  .0.  )  e.  A }
)
130129eleq2d 2534 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
( u ( +g  `  S ) v )  e.  U  <->  ( u
( +g  `  S ) v )  e.  {
g  e.  B  | 
( g supp  .0.  )  e.  A } ) )
131 oveq1 6315 . . . . . . . . 9  |-  ( g  =  ( u ( +g  `  S ) v )  ->  (
g supp  .0.  )  =  ( ( u ( +g  `  S ) v ) supp  .0.  )
)
132131eleq1d 2533 . . . . . . . 8  |-  ( g  =  ( u ( +g  `  S ) v )  ->  (
( g supp  .0.  )  e.  A  <->  ( ( u ( +g  `  S
) v ) supp  .0.  )  e.  A )
)
133132elrab 3184 . . . . . . 7  |-  ( ( u ( +g  `  S
) v )  e. 
{ g  e.  B  |  ( g supp  .0.  )  e.  A }  <->  ( ( u ( +g  `  S ) v )  e.  B  /\  (
( u ( +g  `  S ) v ) supp 
.0.  )  e.  A
) )
134130, 133syl6bb 269 . . . . . 6  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
( u ( +g  `  S ) v )  e.  U  <->  ( (
u ( +g  `  S
) v )  e.  B  /\  ( ( u ( +g  `  S
) v ) supp  .0.  )  e.  A )
) )
13552, 128, 134mpbir2and 936 . . . . 5  |-  ( ( ( ph  /\  u  e.  U )  /\  v  e.  U )  ->  (
u ( +g  `  S
) v )  e.  U )
136135ralrimiva 2809 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  A. v  e.  U  ( u
( +g  `  S ) v )  e.  U
)
1374, 5, 6psrgrp 18699 . . . . . 6  |-  ( ph  ->  S  e.  Grp )
138 eqid 2471 . . . . . . 7  |-  ( invg `  S )  =  ( invg `  S )
1399, 138grpinvcl 16789 . . . . . 6  |-  ( ( S  e.  Grp  /\  u  e.  B )  ->  ( ( invg `  S ) `  u
)  e.  B )
140137, 42, 139syl2an2r 849 . . . . 5  |-  ( (
ph  /\  u  e.  U )  ->  (
( invg `  S ) `  u
)  e.  B )
141 ovex 6336 . . . . . . 7  |-  ( ( ( invg `  S ) `  u
) supp  .0.  )  e.  _V
142141a1i 11 . . . . . 6  |-  ( (
ph  /\  u  e.  U )  ->  (
( ( invg `  S ) `  u
) supp  .0.  )  e.  _V )
14370adantr 472 . . . . . . 7  |-  ( (
ph  /\  u  e.  U )  ->  A. x  e.  A  A. y
( y  C_  x  ->  y  e.  A ) )
144 sseq2 3440 . . . . . . . . . 10  |-  ( x  =  ( u supp  .0.  )  ->  ( y  C_  x 
<->  y  C_  ( u supp  .0.  ) ) )
145144imbi1d 324 . . . . . . . . 9  |-  ( x  =  ( u supp  .0.  )  ->  ( ( y 
C_  x  ->  y  e.  A )  <->  ( y  C_  ( u supp  .0.  )  ->  y  e.  A ) ) )
146145albidv 1775 . . . . . . . 8  |-  ( x  =  ( u supp  .0.  )  ->  ( A. y
( y  C_  x  ->  y  e.  A )  <->  A. y ( y  C_  ( u supp  .0.  )  -> 
y  e.  A ) ) )
147146rspcv 3132 . . . . . . 7  |-  ( ( u supp  .0.  )  e.  A  ->  ( A. x  e.  A  A. y
( y  C_  x  ->  y  e.  A )  ->  A. y ( y 
C_  ( u supp  .0.  )  ->  y  e.  A
) ) )
14855, 143, 147sylc 61 . . . . . 6  |-  ( (
ph  /\  u  e.  U )  ->  A. y
( y  C_  (
u supp  .0.  )  ->  y  e.  A ) )
1494, 11, 7, 9, 140psrelbas 18680 . . . . . . 7  |-  ( (
ph  /\  u  e.  U )  ->  (
( invg `  S ) `  u
) : D --> ( Base `  R ) )
1505adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  U )  ->  I  e.  W )
1516adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  U )  ->  R  e.  Grp )
152 eqid 2471 . . . . . . . . . . 11  |-  ( invg `  R )  =  ( invg `  R )
1534, 150, 151, 7, 152, 9, 138, 42psrneg 18701 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  U )  ->  (
( invg `  S ) `  u
)  =  ( ( invg `  R
)  o.  u ) )
154153adantr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( ( invg `  S ) `
 u )  =  ( ( invg `  R )  o.  u
) )
155154fveq1d 5881 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( (
( invg `  S ) `  u
) `  k )  =  ( ( ( invg `  R
)  o.  u ) `
 k ) )
156 eldifi 3544 . . . . . . . . 9  |-  ( k  e.  ( D  \ 
( u supp  .0.  )
)  ->  k  e.  D )
157 fvco3 5957 . . . . . . . . 9  |-  ( ( u : D --> ( Base `  R )  /\  k  e.  D )  ->  (
( ( invg `  R )  o.  u
) `  k )  =  ( ( invg `  R ) `
 ( u `  k ) ) )
15883, 156, 157syl2an 485 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( (
( invg `  R )  o.  u
) `  k )  =  ( ( invg `  R ) `
 ( u `  k ) ) )
159104fveq2d 5883 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( ( invg `  R ) `
 ( u `  k ) )  =  ( ( invg `  R ) `  .0.  ) )
1608, 152grpinvid 16795 . . . . . . . . . . 11  |-  ( R  e.  Grp  ->  (
( invg `  R ) `  .0.  )  =  .0.  )
161151, 160syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  U )  ->  (
( invg `  R ) `  .0.  )  =  .0.  )
162161adantr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( ( invg `  R ) `
 .0.  )  =  .0.  )
163159, 162eqtrd 2505 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( ( invg `  R ) `
 ( u `  k ) )  =  .0.  )
164155, 158, 1633eqtrd 2509 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  U )  /\  k  e.  ( D  \  (
u supp  .0.  ) )
)  ->  ( (
( invg `  S ) `  u
) `  k )  =  .0.  )
165149, 164suppss 6964 . . . . . 6  |-  ( (
ph  /\  u  e.  U )  ->  (
( ( invg `  S ) `  u
) supp  .0.  )  C_  ( u supp  .0.  ) )
166 sseq1 3439 . . . . . . . 8  |-  ( y  =  ( ( ( invg `  S
) `  u ) supp  .0.  )  ->  ( y 
C_  ( u supp  .0.  ) 
<->  ( ( ( invg `  S ) `
 u ) supp  .0.  )  C_  ( u supp  .0.  ) ) )
167 eleq1 2537 . . . . . . . 8  |-  ( y  =  ( ( ( invg `  S
) `  u ) supp  .0.  )  ->  ( y  e.  A  <->  ( (
( invg `  S ) `  u
) supp  .0.  )  e.  A ) )
168166, 167imbi12d 327 . . . . . . 7  |-  ( y  =  ( ( ( invg `  S
) `  u ) supp  .0.  )  ->  ( ( y  C_  ( u supp  .0.  )  ->  y  e.  A )  <->  ( (
( ( invg `  S ) `  u
) supp  .0.  )  C_  ( u supp  .0.  )  -> 
( ( ( invg `  S ) `
 u ) supp  .0.  )  e.  A )
) )
169168spcgv 3120 . . . . . 6  |-  ( ( ( ( invg `  S ) `  u
) supp  .0.  )  e.  _V  ->  ( A. y
( y  C_  (
u supp  .0.  )  ->  y  e.  A )  -> 
( ( ( ( invg `  S
) `  u ) supp  .0.  )  C_  ( u supp 
.0.  )  ->  (
( ( invg `  S ) `  u
) supp  .0.  )  e.  A ) ) )
170142, 148, 165, 169syl3c 62 . . . . 5  |-  ( (
ph  /\  u  e.  U )  ->  (
( ( invg `  S ) `  u
) supp  .0.  )  e.  A )
17144eleq2d 2534 . . . . . 6  |-  ( (
ph  /\  u  e.  U )  ->  (
( ( invg `  S ) `  u
)  e.  U  <->  ( ( invg `  S ) `
 u )  e. 
{ g  e.  B  |  ( g supp  .0.  )  e.  A }
) )
172 oveq1 6315 . . . . . . . 8  |-  ( g  =  ( ( invg `  S ) `
 u )  -> 
( g supp  .0.  )  =  ( ( ( invg `  S
) `  u ) supp  .0.  ) )
173172eleq1d 2533 . . . . . . 7  |-  ( g  =  ( ( invg `  S ) `
 u )  -> 
( ( g supp  .0.  )  e.  A  <->  ( (
( invg `  S ) `  u
) supp  .0.  )  e.  A ) )
174173elrab 3184 . . . . . 6  |-  ( ( ( invg `  S ) `  u
)  e.  { g  e.  B  |  ( g supp  .0.  )  e.  A }  <->  ( ( ( invg `  S
) `  u )  e.  B  /\  (
( ( invg `  S ) `  u
) supp  .0.  )  e.  A ) )
175171, 174syl6bb 269 . . . . 5  |-  ( (
ph  /\  u  e.  U )  ->  (
( ( invg `  S ) `  u
)  e.  U  <->  ( (
( invg `  S ) `  u
)  e.  B  /\  ( ( ( invg `  S ) `
 u ) supp  .0.  )  e.  A )
) )
176140, 170, 175mpbir2and 936 . . . 4  |-  ( (
ph  /\  u  e.  U )  ->  (
( invg `  S ) `  u
)  e.  U )
177136, 176jca 541 . . 3  |-  ( (
ph  /\  u  e.  U )  ->  ( A. v  e.  U  ( u ( +g  `  S ) v )  e.  U  /\  (
( invg `  S ) `  u
)  e.  U ) )
178177ralrimiva 2809 . 2  |-  ( ph  ->  A. u  e.  U  ( A. v  e.  U  ( u ( +g  `  S ) v )  e.  U  /\  (
( invg `  S ) `  u
)  e.  U ) )
1799, 34, 138issubg2 16910 . . 3  |-  ( S  e.  Grp  ->  ( U  e.  (SubGrp `  S
)  <->  ( U  C_  B  /\  U  =/=  (/)  /\  A. u  e.  U  ( A. v  e.  U  ( u ( +g  `  S ) v )  e.  U  /\  (
( invg `  S ) `  u
)  e.  U ) ) ) )
180137, 179syl 17 . 2  |-  ( ph  ->  ( U  e.  (SubGrp `  S )  <->  ( U  C_  B  /\  U  =/=  (/)  /\  A. u  e.  U  ( A. v  e.  U  ( u
( +g  `  S ) v )  e.  U  /\  ( ( invg `  S ) `  u
)  e.  U ) ) ) )
1813, 33, 178, 180mpbir3and 1213 1  |-  ( ph  ->  U  e.  (SubGrp `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   {crab 2760   _Vcvv 3031    \ cdif 3387    u. cun 3388    C_ wss 3390   (/)c0 3722   {csn 3959    X. cxp 4837   `'ccnv 4838   "cima 4842    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548   supp csupp 6933    ^m cmap 7490   Fincfn 7587   NNcn 10631   NN0cn0 10893   Basecbs 15199   +g cplusg 15268   0gc0g 15416   Grpcgrp 16747   invgcminusg 16748  SubGrpcsubg 16889   mPwSer cmps 18652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-tset 15287  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-minusg 16752  df-subg 16892  df-psr 18657
This theorem is referenced by:  mpllsslem  18736  mplsubg  18738
  Copyright terms: Public domain W3C validator