MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon2mul Structured version   Unicode version

Theorem mplmon2mul 17559
Description: Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
mplmon2cl.p  |-  P  =  ( I mPoly  R )
mplmon2cl.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplmon2cl.z  |-  .0.  =  ( 0g `  R )
mplmon2cl.c  |-  C  =  ( Base `  R
)
mplmon2cl.i  |-  ( ph  ->  I  e.  W )
mplmon2mul.r  |-  ( ph  ->  R  e.  CRing )
mplmon2mul.t  |-  .xb  =  ( .r `  P )
mplmon2mul.u  |-  .x.  =  ( .r `  R )
mplmon2mul.x  |-  ( ph  ->  X  e.  D )
mplmon2mul.y  |-  ( ph  ->  Y  e.  D )
mplmon2mul.f  |-  ( ph  ->  F  e.  C )
mplmon2mul.g  |-  ( ph  ->  G  e.  C )
Assertion
Ref Expression
mplmon2mul  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( F  .x.  G
) ,  .0.  )
) )
Distinct variable groups:    ph, y    y, C    y, D    y, F    y, G    f, I    y, R    y,  .x.    f, X, y   
f, Y, y    y,  .0.
Allowed substitution hints:    ph( f)    C( f)    D( f)    P( y, f)    R( f)    .xb ( y, f)    .x. ( f)    F( f)    G( f)    I( y)    W( y, f)    .0. ( f)

Proof of Theorem mplmon2mul
StepHypRef Expression
1 mplmon2cl.i . . . . 5  |-  ( ph  ->  I  e.  W )
2 mplmon2mul.r . . . . 5  |-  ( ph  ->  R  e.  CRing )
3 mplmon2cl.p . . . . . 6  |-  P  =  ( I mPoly  R )
43mplassa 17511 . . . . 5  |-  ( ( I  e.  W  /\  R  e.  CRing )  ->  P  e. AssAlg )
51, 2, 4syl2anc 656 . . . 4  |-  ( ph  ->  P  e. AssAlg )
6 mplmon2mul.f . . . . 5  |-  ( ph  ->  F  e.  C )
7 mplmon2cl.c . . . . . 6  |-  C  =  ( Base `  R
)
83, 1, 2mplsca 17502 . . . . . . 7  |-  ( ph  ->  R  =  (Scalar `  P ) )
98fveq2d 5692 . . . . . 6  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
107, 9syl5eq 2485 . . . . 5  |-  ( ph  ->  C  =  ( Base `  (Scalar `  P )
) )
116, 10eleqtrd 2517 . . . 4  |-  ( ph  ->  F  e.  ( Base `  (Scalar `  P )
) )
12 eqid 2441 . . . . 5  |-  ( Base `  P )  =  (
Base `  P )
13 mplmon2cl.z . . . . 5  |-  .0.  =  ( 0g `  R )
14 eqid 2441 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
15 mplmon2cl.d . . . . 5  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
16 crngrng 16645 . . . . . 6  |-  ( R  e.  CRing  ->  R  e.  Ring )
172, 16syl 16 . . . . 5  |-  ( ph  ->  R  e.  Ring )
18 mplmon2mul.x . . . . 5  |-  ( ph  ->  X  e.  D )
193, 12, 13, 14, 15, 1, 17, 18mplmon 17520 . . . 4  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  e.  ( Base `  P
) )
20 assalmod 17369 . . . . . 6  |-  ( P  e. AssAlg  ->  P  e.  LMod )
215, 20syl 16 . . . . 5  |-  ( ph  ->  P  e.  LMod )
22 mplmon2mul.g . . . . . 6  |-  ( ph  ->  G  e.  C )
2322, 10eleqtrd 2517 . . . . 5  |-  ( ph  ->  G  e.  ( Base `  (Scalar `  P )
) )
24 mplmon2mul.y . . . . . 6  |-  ( ph  ->  Y  e.  D )
253, 12, 13, 14, 15, 1, 17, 24mplmon 17520 . . . . 5  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) )  e.  ( Base `  P
) )
26 eqid 2441 . . . . . 6  |-  (Scalar `  P )  =  (Scalar `  P )
27 eqid 2441 . . . . . 6  |-  ( .s
`  P )  =  ( .s `  P
)
28 eqid 2441 . . . . . 6  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
2912, 26, 27, 28lmodvscl 16945 . . . . 5  |-  ( ( P  e.  LMod  /\  G  e.  ( Base `  (Scalar `  P ) )  /\  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) )  e.  ( Base `  P
) )  ->  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) )  e.  (
Base `  P )
)
3021, 23, 25, 29syl3anc 1213 . . . 4  |-  ( ph  ->  ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) )  e.  ( Base `  P
) )
31 mplmon2mul.t . . . . 5  |-  .xb  =  ( .r `  P )
3212, 26, 28, 27, 31assaass 17367 . . . 4  |-  ( ( P  e. AssAlg  /\  ( F  e.  ( Base `  (Scalar `  P )
)  /\  ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  e.  ( Base `  P )  /\  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) )  e.  (
Base `  P )
) )  ->  (
( F ( .s
`  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) )  =  ( F ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) ) ) )
335, 11, 19, 30, 32syl13anc 1215 . . 3  |-  ( ph  ->  ( ( F ( .s `  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( F ( .s `  P
) ( ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  .xb  ( G
( .s `  P
) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) ) ) ) )
3412, 26, 28, 27, 31assaassr 17368 . . . . 5  |-  ( ( P  e. AssAlg  /\  ( G  e.  ( Base `  (Scalar `  P )
)  /\  ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  e.  ( Base `  P )  /\  (
y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) )  e.  (
Base `  P )
) )  ->  (
( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) )  =  ( G ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) ) )
355, 23, 19, 25, 34syl13anc 1215 . . . 4  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( G ( .s `  P
) ( ( y  e.  D  |->  if ( y  =  X , 
( 1r `  R
) ,  .0.  )
)  .xb  ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) ) )
3635oveq2d 6106 . . 3  |-  ( ph  ->  ( F ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y , 
( 1r `  R
) ,  .0.  )
) ) ) )  =  ( F ( .s `  P ) ( G ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) ) ) )
373, 12, 13, 14, 15, 1, 17, 18, 31, 24mplmonmul 17521 . . . . . 6  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) 
.xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )
3837oveq2d 6106 . . . . 5  |-  ( ph  ->  ( G ( .s
`  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( G ( .s `  P
) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) )
3938oveq2d 6106 . . . 4  |-  ( ph  ->  ( F ( .s
`  P ) ( G ( .s `  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) )  .xb  (
y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) ) ) )  =  ( F ( .s `  P
) ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R
) ,  .0.  )
) ) ) )
4015psrbagaddcl 17416 . . . . . . 7  |-  ( ( I  e.  W  /\  X  e.  D  /\  Y  e.  D )  ->  ( X  oF  +  Y )  e.  D )
411, 18, 24, 40syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( X  oF  +  Y )  e.  D )
423, 12, 13, 14, 15, 1, 17, 41mplmon 17520 . . . . 5  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R
) ,  .0.  )
)  e.  ( Base `  P ) )
43 eqid 2441 . . . . . 6  |-  ( .r
`  (Scalar `  P )
)  =  ( .r
`  (Scalar `  P )
)
4412, 26, 27, 28, 43lmodvsass 16953 . . . . 5  |-  ( ( P  e.  LMod  /\  ( F  e.  ( Base `  (Scalar `  P )
)  /\  G  e.  ( Base `  (Scalar `  P
) )  /\  (
y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R ) ,  .0.  ) )  e.  ( Base `  P
) ) )  -> 
( ( F ( .r `  (Scalar `  P ) ) G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )  =  ( F ( .s `  P ) ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) ) )
4521, 11, 23, 42, 44syl13anc 1215 . . . 4  |-  ( ph  ->  ( ( F ( .r `  (Scalar `  P ) ) G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )  =  ( F ( .s `  P ) ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) ) )
46 mplmon2mul.u . . . . . . 7  |-  .x.  =  ( .r `  R )
478fveq2d 5692 . . . . . . 7  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  (Scalar `  P )
) )
4846, 47syl5req 2486 . . . . . 6  |-  ( ph  ->  ( .r `  (Scalar `  P ) )  = 
.x.  )
4948oveqd 6107 . . . . 5  |-  ( ph  ->  ( F ( .r
`  (Scalar `  P )
) G )  =  ( F  .x.  G
) )
5049oveq1d 6105 . . . 4  |-  ( ph  ->  ( ( F ( .r `  (Scalar `  P ) ) G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y
) ,  ( 1r
`  R ) ,  .0.  ) ) )  =  ( ( F 
.x.  G ) ( .s `  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R
) ,  .0.  )
) ) )
5139, 45, 503eqtr2d 2479 . . 3  |-  ( ph  ->  ( F ( .s
`  P ) ( G ( .s `  P ) ( ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) )  .xb  (
y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) ) ) )  =  ( ( F  .x.  G ) ( .s `  P
) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) )
5233, 36, 513eqtrd 2477 . 2  |-  ( ph  ->  ( ( F ( .s `  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( ( F  .x.  G ) ( .s `  P
) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) ) )
533, 27, 15, 14, 13, 7, 1, 17, 18, 6mplmon2 17551 . . 3  |-  ( ph  ->  ( F ( .s
`  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) ) )
543, 27, 15, 14, 13, 7, 1, 17, 24, 22mplmon2 17551 . . 3  |-  ( ph  ->  ( G ( .s
`  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) )
5553, 54oveq12d 6108 . 2  |-  ( ph  ->  ( ( F ( .s `  P ) ( y  e.  D  |->  if ( y  =  X ,  ( 1r
`  R ) ,  .0.  ) ) ) 
.xb  ( G ( .s `  P ) ( y  e.  D  |->  if ( y  =  Y ,  ( 1r
`  R ) ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) )  .xb  (
y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) ) )
567, 46rngcl 16648 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  C  /\  G  e.  C )  ->  ( F  .x.  G )  e.  C )
5717, 6, 22, 56syl3anc 1213 . . 3  |-  ( ph  ->  ( F  .x.  G
)  e.  C )
583, 27, 15, 14, 13, 7, 1, 17, 41, 57mplmon2 17551 . 2  |-  ( ph  ->  ( ( F  .x.  G ) ( .s
`  P ) ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( 1r `  R ) ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y
) ,  ( F 
.x.  G ) ,  .0.  ) ) )
5952, 55, 583eqtr3d 2481 1  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  F ,  .0.  ) )  .xb  ( y  e.  D  |->  if ( y  =  Y ,  G ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  oF  +  Y ) ,  ( F  .x.  G
) ,  .0.  )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 1761   {crab 2717   ifcif 3788    e. cmpt 4347   `'ccnv 4835   "cima 4839   ` cfv 5415  (class class class)co 6090    oFcof 6317    ^m cmap 7210   Fincfn 7306    + caddc 9281   NNcn 10318   NN0cn0 10575   Basecbs 14170   .rcmulr 14235  Scalarcsca 14237   .scvsca 14238   0gc0g 14374   1rcur 16593   Ringcrg 16635   CRingccrg 16636   LModclmod 16928  AssAlgcasa 17359   mPoly cmpl 17398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-tset 14253  df-0g 14376  df-gsum 14377  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-ghm 15738  df-cntz 15828  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-subrg 16843  df-lmod 16930  df-lss 16992  df-assa 17362  df-psr 17401  df-mpl 17403
This theorem is referenced by:  evlslem2  17573
  Copyright terms: Public domain W3C validator