MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon2 Structured version   Unicode version

Theorem mplmon2 17507
Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
mplmon2.p  |-  P  =  ( I mPoly  R )
mplmon2.v  |-  .x.  =  ( .s `  P )
mplmon2.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplmon2.o  |-  .1.  =  ( 1r `  R )
mplmon2.z  |-  .0.  =  ( 0g `  R )
mplmon2.b  |-  B  =  ( Base `  R
)
mplmon2.i  |-  ( ph  ->  I  e.  W )
mplmon2.r  |-  ( ph  ->  R  e.  Ring )
mplmon2.k  |-  ( ph  ->  K  e.  D )
mplmon2.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
mplmon2  |-  ( ph  ->  ( X  .x.  (
y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  K ,  X ,  .0.  ) ) )
Distinct variable groups:    ph, y    y, B    y, D    f, I    f, K, y    y,  .1.    y, R    y, X    y,  .0.
Allowed substitution hints:    ph( f)    B( f)    D( f)    P( y, f)    R( f)    .x. ( y, f)    .1. ( f)    I( y)    W( y, f)    X( f)    .0. ( f)

Proof of Theorem mplmon2
StepHypRef Expression
1 mplmon2.p . . 3  |-  P  =  ( I mPoly  R )
2 mplmon2.v . . 3  |-  .x.  =  ( .s `  P )
3 mplmon2.b . . 3  |-  B  =  ( Base `  R
)
4 eqid 2433 . . 3  |-  ( Base `  P )  =  (
Base `  P )
5 eqid 2433 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
6 mplmon2.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
7 mplmon2.x . . 3  |-  ( ph  ->  X  e.  B )
8 mplmon2.z . . . 4  |-  .0.  =  ( 0g `  R )
9 mplmon2.o . . . 4  |-  .1.  =  ( 1r `  R )
10 mplmon2.i . . . 4  |-  ( ph  ->  I  e.  W )
11 mplmon2.r . . . 4  |-  ( ph  ->  R  e.  Ring )
12 mplmon2.k . . . 4  |-  ( ph  ->  K  e.  D )
131, 4, 8, 9, 6, 10, 11, 12mplmon 17476 . . 3  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) )  e.  (
Base `  P )
)
141, 2, 3, 4, 5, 6, 7, 13mplvsca 17460 . 2  |-  ( ph  ->  ( X  .x.  (
y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( ( D  X.  { X } )  oF ( .r `  R ) ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) ) )
15 ovex 6105 . . . . . 6  |-  ( NN0 
^m  I )  e. 
_V
1615rabex 4431 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
176, 16eqeltri 2503 . . . 4  |-  D  e. 
_V
1817a1i 11 . . 3  |-  ( ph  ->  D  e.  _V )
197adantr 462 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  X  e.  B )
20 fvex 5689 . . . . . 6  |-  ( 1r
`  R )  e. 
_V
219, 20eqeltri 2503 . . . . 5  |-  .1.  e.  _V
22 fvex 5689 . . . . . 6  |-  ( 0g
`  R )  e. 
_V
238, 22eqeltri 2503 . . . . 5  |-  .0.  e.  _V
2421, 23ifex 3846 . . . 4  |-  if ( y  =  K ,  .1.  ,  .0.  )  e. 
_V
2524a1i 11 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  if ( y  =  K ,  .1.  ,  .0.  )  e.  _V )
26 fconstmpt 4869 . . . 4  |-  ( D  X.  { X }
)  =  ( y  e.  D  |->  X )
2726a1i 11 . . 3  |-  ( ph  ->  ( D  X.  { X } )  =  ( y  e.  D  |->  X ) )
28 eqidd 2434 . . 3  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )
2918, 19, 25, 27, 28offval2 6325 . 2  |-  ( ph  ->  ( ( D  X.  { X } )  oF ( .r `  R ) ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  ( X ( .r `  R
) if ( y  =  K ,  .1.  ,  .0.  ) ) ) )
30 oveq2 6088 . . . . 5  |-  (  .1.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  ( X ( .r `  R )  .1.  )  =  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) ) )
3130eqeq1d 2441 . . . 4  |-  (  .1.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  (
( X ( .r
`  R )  .1.  )  =  if ( y  =  K ,  X ,  .0.  )  <->  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) )  =  if ( y  =  K ,  X ,  .0.  ) ) )
32 oveq2 6088 . . . . 5  |-  (  .0.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  ( X ( .r `  R )  .0.  )  =  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) ) )
3332eqeq1d 2441 . . . 4  |-  (  .0.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  (
( X ( .r
`  R )  .0.  )  =  if ( y  =  K ,  X ,  .0.  )  <->  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) )  =  if ( y  =  K ,  X ,  .0.  ) ) )
343, 5, 9rngridm 16605 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X ( .r `  R )  .1.  )  =  X )
3511, 7, 34syl2anc 654 . . . . 5  |-  ( ph  ->  ( X ( .r
`  R )  .1.  )  =  X )
36 iftrue 3785 . . . . . 6  |-  ( y  =  K  ->  if ( y  =  K ,  X ,  .0.  )  =  X )
3736eqcomd 2438 . . . . 5  |-  ( y  =  K  ->  X  =  if ( y  =  K ,  X ,  .0.  ) )
3835, 37sylan9eq 2485 . . . 4  |-  ( (
ph  /\  y  =  K )  ->  ( X ( .r `  R )  .1.  )  =  if ( y  =  K ,  X ,  .0.  ) )
393, 5, 8rngrz 16618 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X ( .r `  R )  .0.  )  =  .0.  )
4011, 7, 39syl2anc 654 . . . . 5  |-  ( ph  ->  ( X ( .r
`  R )  .0.  )  =  .0.  )
41 iffalse 3787 . . . . . 6  |-  ( -.  y  =  K  ->  if ( y  =  K ,  X ,  .0.  )  =  .0.  )
4241eqcomd 2438 . . . . 5  |-  ( -.  y  =  K  ->  .0.  =  if ( y  =  K ,  X ,  .0.  ) )
4340, 42sylan9eq 2485 . . . 4  |-  ( (
ph  /\  -.  y  =  K )  ->  ( X ( .r `  R )  .0.  )  =  if ( y  =  K ,  X ,  .0.  ) )
4431, 33, 38, 43ifbothda 3812 . . 3  |-  ( ph  ->  ( X ( .r
`  R ) if ( y  =  K ,  .1.  ,  .0.  ) )  =  if ( y  =  K ,  X ,  .0.  ) )
4544mpteq2dv 4367 . 2  |-  ( ph  ->  ( y  e.  D  |->  ( X ( .r
`  R ) if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  K ,  X ,  .0.  ) ) )
4614, 29, 453eqtrd 2469 1  |-  ( ph  ->  ( X  .x.  (
y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  K ,  X ,  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   {crab 2709   _Vcvv 2962   ifcif 3779   {csn 3865    e. cmpt 4338    X. cxp 4825   `'ccnv 4826   "cima 4830   ` cfv 5406  (class class class)co 6080    oFcof 6307    ^m cmap 7202   Fincfn 7298   NNcn 10310   NN0cn0 10567   Basecbs 14157   .rcmulr 14222   .scvsca 14225   0gc0g 14361   Ringcrg 16577   1rcur 16579   mPoly cmpl 17342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-tset 14240  df-0g 14363  df-mnd 15398  df-grp 15525  df-mgp 16566  df-rng 16580  df-ur 16582  df-psr 17351  df-mpl 17353
This theorem is referenced by:  mplascl  17510  mplmon2cl  17514  mplmon2mul  17515  mplcoe4  17517  coe1tm  17624
  Copyright terms: Public domain W3C validator