MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmon2 Structured version   Unicode version

Theorem mplmon2 18651
Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
mplmon2.p  |-  P  =  ( I mPoly  R )
mplmon2.v  |-  .x.  =  ( .s `  P )
mplmon2.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplmon2.o  |-  .1.  =  ( 1r `  R )
mplmon2.z  |-  .0.  =  ( 0g `  R )
mplmon2.b  |-  B  =  ( Base `  R
)
mplmon2.i  |-  ( ph  ->  I  e.  W )
mplmon2.r  |-  ( ph  ->  R  e.  Ring )
mplmon2.k  |-  ( ph  ->  K  e.  D )
mplmon2.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
mplmon2  |-  ( ph  ->  ( X  .x.  (
y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  K ,  X ,  .0.  ) ) )
Distinct variable groups:    ph, y    y, B    y, D    f, I    f, K, y    y,  .1.    y, R    y, X    y,  .0.
Allowed substitution hints:    ph( f)    B( f)    D( f)    P( y, f)    R( f)    .x. ( y, f)    .1. ( f)    I( y)    W( y, f)    X( f)    .0. ( f)

Proof of Theorem mplmon2
StepHypRef Expression
1 mplmon2.p . . 3  |-  P  =  ( I mPoly  R )
2 mplmon2.v . . 3  |-  .x.  =  ( .s `  P )
3 mplmon2.b . . 3  |-  B  =  ( Base `  R
)
4 eqid 2429 . . 3  |-  ( Base `  P )  =  (
Base `  P )
5 eqid 2429 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
6 mplmon2.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
7 mplmon2.x . . 3  |-  ( ph  ->  X  e.  B )
8 mplmon2.z . . . 4  |-  .0.  =  ( 0g `  R )
9 mplmon2.o . . . 4  |-  .1.  =  ( 1r `  R )
10 mplmon2.i . . . 4  |-  ( ph  ->  I  e.  W )
11 mplmon2.r . . . 4  |-  ( ph  ->  R  e.  Ring )
12 mplmon2.k . . . 4  |-  ( ph  ->  K  e.  D )
131, 4, 8, 9, 6, 10, 11, 12mplmon 18622 . . 3  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) )  e.  (
Base `  P )
)
141, 2, 3, 4, 5, 6, 7, 13mplvsca 18606 . 2  |-  ( ph  ->  ( X  .x.  (
y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( ( D  X.  { X } )  oF ( .r `  R ) ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) ) )
15 ovex 6333 . . . . 5  |-  ( NN0 
^m  I )  e. 
_V
166, 15rabex2 4578 . . . 4  |-  D  e. 
_V
1716a1i 11 . . 3  |-  ( ph  ->  D  e.  _V )
187adantr 466 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  X  e.  B )
19 fvex 5891 . . . . . 6  |-  ( 1r
`  R )  e. 
_V
209, 19eqeltri 2513 . . . . 5  |-  .1.  e.  _V
21 fvex 5891 . . . . . 6  |-  ( 0g
`  R )  e. 
_V
228, 21eqeltri 2513 . . . . 5  |-  .0.  e.  _V
2320, 22ifex 3983 . . . 4  |-  if ( y  =  K ,  .1.  ,  .0.  )  e. 
_V
2423a1i 11 . . 3  |-  ( (
ph  /\  y  e.  D )  ->  if ( y  =  K ,  .1.  ,  .0.  )  e.  _V )
25 fconstmpt 4898 . . . 4  |-  ( D  X.  { X }
)  =  ( y  e.  D  |->  X )
2625a1i 11 . . 3  |-  ( ph  ->  ( D  X.  { X } )  =  ( y  e.  D  |->  X ) )
27 eqidd 2430 . . 3  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )
2817, 18, 24, 26, 27offval2 6562 . 2  |-  ( ph  ->  ( ( D  X.  { X } )  oF ( .r `  R ) ( y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  ( X ( .r `  R
) if ( y  =  K ,  .1.  ,  .0.  ) ) ) )
29 oveq2 6313 . . . . 5  |-  (  .1.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  ( X ( .r `  R )  .1.  )  =  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) ) )
3029eqeq1d 2431 . . . 4  |-  (  .1.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  (
( X ( .r
`  R )  .1.  )  =  if ( y  =  K ,  X ,  .0.  )  <->  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) )  =  if ( y  =  K ,  X ,  .0.  ) ) )
31 oveq2 6313 . . . . 5  |-  (  .0.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  ( X ( .r `  R )  .0.  )  =  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) ) )
3231eqeq1d 2431 . . . 4  |-  (  .0.  =  if ( y  =  K ,  .1.  ,  .0.  )  ->  (
( X ( .r
`  R )  .0.  )  =  if ( y  =  K ,  X ,  .0.  )  <->  ( X ( .r `  R ) if ( y  =  K ,  .1.  ,  .0.  ) )  =  if ( y  =  K ,  X ,  .0.  ) ) )
333, 5, 9ringridm 17740 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X ( .r `  R )  .1.  )  =  X )
3411, 7, 33syl2anc 665 . . . . 5  |-  ( ph  ->  ( X ( .r
`  R )  .1.  )  =  X )
35 iftrue 3921 . . . . . 6  |-  ( y  =  K  ->  if ( y  =  K ,  X ,  .0.  )  =  X )
3635eqcomd 2437 . . . . 5  |-  ( y  =  K  ->  X  =  if ( y  =  K ,  X ,  .0.  ) )
3734, 36sylan9eq 2490 . . . 4  |-  ( (
ph  /\  y  =  K )  ->  ( X ( .r `  R )  .1.  )  =  if ( y  =  K ,  X ,  .0.  ) )
383, 5, 8ringrz 17753 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X ( .r `  R )  .0.  )  =  .0.  )
3911, 7, 38syl2anc 665 . . . . 5  |-  ( ph  ->  ( X ( .r
`  R )  .0.  )  =  .0.  )
40 iffalse 3924 . . . . . 6  |-  ( -.  y  =  K  ->  if ( y  =  K ,  X ,  .0.  )  =  .0.  )
4140eqcomd 2437 . . . . 5  |-  ( -.  y  =  K  ->  .0.  =  if ( y  =  K ,  X ,  .0.  ) )
4239, 41sylan9eq 2490 . . . 4  |-  ( (
ph  /\  -.  y  =  K )  ->  ( X ( .r `  R )  .0.  )  =  if ( y  =  K ,  X ,  .0.  ) )
4330, 32, 37, 42ifbothda 3950 . . 3  |-  ( ph  ->  ( X ( .r
`  R ) if ( y  =  K ,  .1.  ,  .0.  ) )  =  if ( y  =  K ,  X ,  .0.  ) )
4443mpteq2dv 4513 . 2  |-  ( ph  ->  ( y  e.  D  |->  ( X ( .r
`  R ) if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  K ,  X ,  .0.  ) ) )
4514, 28, 443eqtrd 2474 1  |-  ( ph  ->  ( X  .x.  (
y  e.  D  |->  if ( y  =  K ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  K ,  X ,  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   {crab 2786   _Vcvv 3087   ifcif 3915   {csn 4002    |-> cmpt 4484    X. cxp 4852   `'ccnv 4853   "cima 4857   ` cfv 5601  (class class class)co 6305    oFcof 6543    ^m cmap 7480   Fincfn 7577   NNcn 10609   NN0cn0 10869   Basecbs 15084   .rcmulr 15153   .scvsca 15156   0gc0g 15297   1rcur 17670   Ringcrg 17715   mPoly cmpl 18512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-sca 15168  df-vsca 15169  df-tset 15171  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624  df-mgp 17659  df-ur 17671  df-ring 17717  df-psr 18515  df-mpl 18517
This theorem is referenced by:  mplascl  18654  mplmon2cl  18658  mplmon2mul  18659  mplcoe4  18661  coe1tm  18801
  Copyright terms: Public domain W3C validator