MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe2OLD Structured version   Unicode version

Theorem mplcoe2OLD 17553
Description: Decompose a monomial into a finite product of powers of variables. (The assumption that  R is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) Obsolete version of mplcoe2 17552 as of 18-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mplcoe1.p  |-  P  =  ( I mPoly  R )
mplcoe1.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplcoe1.z  |-  .0.  =  ( 0g `  R )
mplcoe1.o  |-  .1.  =  ( 1r `  R )
mplcoe1.i  |-  ( ph  ->  I  e.  W )
mplcoe2.g  |-  G  =  (mulGrp `  P )
mplcoe2.m  |-  .^  =  (.g
`  G )
mplcoe2.v  |-  V  =  ( I mVar  R )
mplcoe2.r  |-  ( ph  ->  R  e.  CRing )
mplcoe2.y  |-  ( ph  ->  Y  e.  D )
Assertion
Ref Expression
mplcoe2OLD  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  I  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
Distinct variable groups:    .^ , k, y    .1. , k, y    k, G   
f, k, y, I    ph, k, y    R, f, y    D, k, y    P, k    k, V    .0. , f,
k, y    f, Y, k, y    k, W, y   
y, G    y, V    y, 
.^
Allowed substitution hints:    ph( f)    D( f)    P( y, f)    R( k)    .1. ( f)    .^ ( f)    G( f)    V( f)    W( f)

Proof of Theorem mplcoe2OLD
Dummy variables  i  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe2.y . . . . . . . . 9  |-  ( ph  ->  Y  e.  D )
2 mplcoe1.i . . . . . . . . . 10  |-  ( ph  ->  I  e.  W )
3 mplcoe1.d . . . . . . . . . . 11  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
43psrbag 17434 . . . . . . . . . 10  |-  ( I  e.  W  ->  ( Y  e.  D  <->  ( Y : I --> NN0  /\  ( `' Y " NN )  e.  Fin ) ) )
52, 4syl 16 . . . . . . . . 9  |-  ( ph  ->  ( Y  e.  D  <->  ( Y : I --> NN0  /\  ( `' Y " NN )  e.  Fin ) ) )
61, 5mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( Y : I --> NN0  /\  ( `' Y " NN )  e.  Fin ) )
76simpld 459 . . . . . . 7  |-  ( ph  ->  Y : I --> NN0 )
87feqmptd 5747 . . . . . 6  |-  ( ph  ->  Y  =  ( i  e.  I  |->  ( Y `
 i ) ) )
9 iftrue 3800 . . . . . . . . 9  |-  ( i  e.  ( `' Y " NN )  ->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 )  =  ( Y `
 i ) )
109adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  I )  /\  i  e.  ( `' Y " NN ) )  ->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 )  =  ( Y `
 i ) )
11 eldif 3341 . . . . . . . . . 10  |-  ( i  e.  ( I  \ 
( `' Y " NN ) )  <->  ( i  e.  I  /\  -.  i  e.  ( `' Y " NN ) ) )
12 ifid 3829 . . . . . . . . . . 11  |-  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  ( Y `  i ) )  =  ( Y `
 i )
13 nn0suppOLD 10637 . . . . . . . . . . . . . . 15  |-  ( Y : I --> NN0  ->  ( `' Y " ( _V 
\  { 0 } ) )  =  ( `' Y " NN ) )
147, 13syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' Y "
( _V  \  {
0 } ) )  =  ( `' Y " NN ) )
15 eqimss 3411 . . . . . . . . . . . . . 14  |-  ( ( `' Y " ( _V 
\  { 0 } ) )  =  ( `' Y " NN )  ->  ( `' Y " ( _V  \  {
0 } ) ) 
C_  ( `' Y " NN ) )
1614, 15syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' Y "
( _V  \  {
0 } ) ) 
C_  ( `' Y " NN ) )
177, 16suppssrOLD 5840 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( I  \  ( `' Y " NN ) ) )  ->  ( Y `  i )  =  0 )
1817ifeq2d 3811 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  ( I  \  ( `' Y " NN ) ) )  ->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  ( Y `  i ) )  =  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) )
1912, 18syl5reqr 2490 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( I  \  ( `' Y " NN ) ) )  ->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 )  =  ( Y `
 i ) )
2011, 19sylan2br 476 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  I  /\  -.  i  e.  ( `' Y " NN ) ) )  ->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 )  =  ( Y `
 i ) )
2120anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  I )  /\  -.  i  e.  ( `' Y " NN ) )  ->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 )  =  ( Y `  i
) )
2210, 21pm2.61dan 789 . . . . . . 7  |-  ( (
ph  /\  i  e.  I )  ->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 )  =  ( Y `
 i ) )
2322mpteq2dva 4381 . . . . . 6  |-  ( ph  ->  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `
 i ) ,  0 ) )  =  ( i  e.  I  |->  ( Y `  i
) ) )
248, 23eqtr4d 2478 . . . . 5  |-  ( ph  ->  Y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) )
2524eqeq2d 2454 . . . 4  |-  ( ph  ->  ( y  =  Y  <-> 
y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) ) )
2625ifbid 3814 . . 3  |-  ( ph  ->  if ( y  =  Y ,  .1.  ,  .0.  )  =  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )
2726mpteq2dv 4382 . 2  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) ) )
28 cnvimass 5192 . . . . 5  |-  ( `' Y " NN ) 
C_  dom  Y
29 fdm 5566 . . . . . 6  |-  ( Y : I --> NN0  ->  dom 
Y  =  I )
307, 29syl 16 . . . . 5  |-  ( ph  ->  dom  Y  =  I )
3128, 30syl5sseq 3407 . . . 4  |-  ( ph  ->  ( `' Y " NN )  C_  I )
326simprd 463 . . . . 5  |-  ( ph  ->  ( `' Y " NN )  e.  Fin )
33 sseq1 3380 . . . . . . . 8  |-  ( w  =  (/)  ->  ( w 
C_  I  <->  (/)  C_  I
) )
34 noel 3644 . . . . . . . . . . . . . . . 16  |-  -.  i  e.  (/)
35 eleq2 2504 . . . . . . . . . . . . . . . 16  |-  ( w  =  (/)  ->  ( i  e.  w  <->  i  e.  (/) ) )
3634, 35mtbiri 303 . . . . . . . . . . . . . . 15  |-  ( w  =  (/)  ->  -.  i  e.  w )
37 iffalse 3802 . . . . . . . . . . . . . . 15  |-  ( -.  i  e.  w  ->  if ( i  e.  w ,  ( Y `  i ) ,  0 )  =  0 )
3836, 37syl 16 . . . . . . . . . . . . . 14  |-  ( w  =  (/)  ->  if ( i  e.  w ,  ( Y `  i
) ,  0 )  =  0 )
3938mpteq2dv 4382 . . . . . . . . . . . . 13  |-  ( w  =  (/)  ->  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i
) ,  0 ) )  =  ( i  e.  I  |->  0 ) )
40 fconstmpt 4885 . . . . . . . . . . . . 13  |-  ( I  X.  { 0 } )  =  ( i  e.  I  |->  0 )
4139, 40syl6eqr 2493 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i
) ,  0 ) )  =  ( I  X.  { 0 } ) )
4241eqeq2d 2454 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) )  <-> 
y  =  ( I  X.  { 0 } ) ) )
4342ifbid 3814 . . . . . . . . . 10  |-  ( w  =  (/)  ->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  )  =  if ( y  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )
4443mpteq2dv 4382 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) ) )
45 mpteq1 4375 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( k  e.  w  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) )  =  ( k  e.  (/)  |->  ( ( Y `
 k )  .^  ( V `  k ) ) ) )
46 mpt0 5541 . . . . . . . . . . . 12  |-  ( k  e.  (/)  |->  ( ( Y `
 k )  .^  ( V `  k ) ) )  =  (/)
4745, 46syl6eq 2491 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( k  e.  w  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) )  =  (/) )
4847oveq2d 6110 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( G 
gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  =  ( G  gsumg  (/) ) )
49 mplcoe2.g . . . . . . . . . . . 12  |-  G  =  (mulGrp `  P )
50 eqid 2443 . . . . . . . . . . . 12  |-  ( 1r
`  P )  =  ( 1r `  P
)
5149, 50rngidval 16608 . . . . . . . . . . 11  |-  ( 1r
`  P )  =  ( 0g `  G
)
5251gsum0 15513 . . . . . . . . . 10  |-  ( G 
gsumg  (/) )  =  ( 1r
`  P )
5348, 52syl6eq 2491 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( G 
gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  =  ( 1r `  P
) )
5444, 53eqeq12d 2457 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  <->  ( y  e.  D  |->  if ( y  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )  =  ( 1r `  P ) ) )
5533, 54imbi12d 320 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( w  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  <-> 
( (/)  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )  =  ( 1r `  P
) ) ) )
5655imbi2d 316 . . . . . 6  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )  <->  ( ph  ->  (
(/)  C_  I  ->  (
y  e.  D  |->  if ( y  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )  =  ( 1r `  P
) ) ) ) )
57 sseq1 3380 . . . . . . . 8  |-  ( w  =  x  ->  (
w  C_  I  <->  x  C_  I
) )
58 eleq2 2504 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
i  e.  w  <->  i  e.  x ) )
5958ifbid 3814 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  if ( i  e.  w ,  ( Y `  i ) ,  0 )  =  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )
6059mpteq2dv 4382 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) )  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) )
6160eqeq2d 2454 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i
) ,  0 ) )  <->  y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ) )
6261ifbid 3814 . . . . . . . . . 10  |-  ( w  =  x  ->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  )  =  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )
6362mpteq2dv 4382 . . . . . . . . 9  |-  ( w  =  x  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
) )
64 mpteq1 4375 . . . . . . . . . 10  |-  ( w  =  x  ->  (
k  e.  w  |->  ( ( Y `  k
)  .^  ( V `  k ) ) )  =  ( k  e.  x  |->  ( ( Y `
 k )  .^  ( V `  k ) ) ) )
6564oveq2d 6110 . . . . . . . . 9  |-  ( w  =  x  ->  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
6663, 65eqeq12d 2457 . . . . . . . 8  |-  ( w  =  x  ->  (
( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  <->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )
6757, 66imbi12d 320 . . . . . . 7  |-  ( w  =  x  ->  (
( w  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  <-> 
( x  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) ) )
6867imbi2d 316 . . . . . 6  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  I  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )  <->  ( ph  ->  ( x  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) ) ) )
69 sseq1 3380 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ z } )  ->  ( w  C_  I 
<->  ( x  u.  {
z } )  C_  I ) )
70 eleq2 2504 . . . . . . . . . . . . . 14  |-  ( w  =  ( x  u. 
{ z } )  ->  ( i  e.  w  <->  i  e.  ( x  u.  { z } ) ) )
7170ifbid 3814 . . . . . . . . . . . . 13  |-  ( w  =  ( x  u. 
{ z } )  ->  if ( i  e.  w ,  ( Y `  i ) ,  0 )  =  if ( i  e.  ( x  u.  {
z } ) ,  ( Y `  i
) ,  0 ) )
7271mpteq2dv 4382 . . . . . . . . . . . 12  |-  ( w  =  ( x  u. 
{ z } )  ->  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) )  =  ( i  e.  I  |->  if ( i  e.  ( x  u. 
{ z } ) ,  ( Y `  i ) ,  0 ) ) )
7372eqeq2d 2454 . . . . . . . . . . 11  |-  ( w  =  ( x  u. 
{ z } )  ->  ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `
 i ) ,  0 ) )  <->  y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  {
z } ) ,  ( Y `  i
) ,  0 ) ) ) )
7473ifbid 3814 . . . . . . . . . 10  |-  ( w  =  ( x  u. 
{ z } )  ->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  )  =  if (
y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)
7574mpteq2dv 4382 . . . . . . . . 9  |-  ( w  =  ( x  u. 
{ z } )  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) ) )
76 mpteq1 4375 . . . . . . . . . 10  |-  ( w  =  ( x  u. 
{ z } )  ->  ( k  e.  w  |->  ( ( Y `
 k )  .^  ( V `  k ) ) )  =  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `
 k )  .^  ( V `  k ) ) ) )
7776oveq2d 6110 . . . . . . . . 9  |-  ( w  =  ( x  u. 
{ z } )  ->  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) )  =  ( G 
gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) )
7875, 77eqeq12d 2457 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  <->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) )
7969, 78imbi12d 320 . . . . . . 7  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( w 
C_  I  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  <-> 
( ( x  u. 
{ z } ) 
C_  I  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) ) )
8079imbi2d 316 . . . . . 6  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )  <->  ( ph  ->  ( ( x  u.  {
z } )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u. 
{ z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) ) ) )
81 sseq1 3380 . . . . . . . 8  |-  ( w  =  ( `' Y " NN )  ->  (
w  C_  I  <->  ( `' Y " NN )  C_  I ) )
82 eleq2 2504 . . . . . . . . . . . . . 14  |-  ( w  =  ( `' Y " NN )  ->  (
i  e.  w  <->  i  e.  ( `' Y " NN ) ) )
8382ifbid 3814 . . . . . . . . . . . . 13  |-  ( w  =  ( `' Y " NN )  ->  if ( i  e.  w ,  ( Y `  i ) ,  0 )  =  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) )
8483mpteq2dv 4382 . . . . . . . . . . . 12  |-  ( w  =  ( `' Y " NN )  ->  (
i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) )  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) )
8584eqeq2d 2454 . . . . . . . . . . 11  |-  ( w  =  ( `' Y " NN )  ->  (
y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i
) ,  0 ) )  <->  y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) ) )
8685ifbid 3814 . . . . . . . . . 10  |-  ( w  =  ( `' Y " NN )  ->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  )  =  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )
8786mpteq2dv 4382 . . . . . . . . 9  |-  ( w  =  ( `' Y " NN )  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
) )
88 mpteq1 4375 . . . . . . . . . 10  |-  ( w  =  ( `' Y " NN )  ->  (
k  e.  w  |->  ( ( Y `  k
)  .^  ( V `  k ) ) )  =  ( k  e.  ( `' Y " NN )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) )
8988oveq2d 6110 . . . . . . . . 9  |-  ( w  =  ( `' Y " NN )  ->  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  =  ( G  gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
9087, 89eqeq12d 2457 . . . . . . . 8  |-  ( w  =  ( `' Y " NN )  ->  (
( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  <->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )
9181, 90imbi12d 320 . . . . . . 7  |-  ( w  =  ( `' Y " NN )  ->  (
( w  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  <-> 
( ( `' Y " NN )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) ) )
9291imbi2d 316 . . . . . 6  |-  ( w  =  ( `' Y " NN )  ->  (
( ph  ->  ( w 
C_  I  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  w ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  w  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )  <->  ( ph  ->  ( ( `' Y " NN )  C_  I  -> 
( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) ) ) )
93 mplcoe1.p . . . . . . . . 9  |-  P  =  ( I mPoly  R )
94 mplcoe1.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
95 mplcoe1.o . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
96 mplcoe2.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  CRing )
97 crngrng 16658 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  R  e.  Ring )
9896, 97syl 16 . . . . . . . . 9  |-  ( ph  ->  R  e.  Ring )
9993, 3, 94, 95, 50, 2, 98mpl1 17526 . . . . . . . 8  |-  ( ph  ->  ( 1r `  P
)  =  ( y  e.  D  |->  if ( y  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) ) )
10099eqcomd 2448 . . . . . . 7  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)  =  ( 1r
`  P ) )
101100a1d 25 . . . . . 6  |-  ( ph  ->  ( (/)  C_  I  -> 
( y  e.  D  |->  if ( y  =  ( I  X.  {
0 } ) ,  .1.  ,  .0.  )
)  =  ( 1r
`  P ) ) )
102 ssun1 3522 . . . . . . . . . . 11  |-  x  C_  ( x  u.  { z } )
103 sstr2 3366 . . . . . . . . . . 11  |-  ( x 
C_  ( x  u. 
{ z } )  ->  ( ( x  u.  { z } )  C_  I  ->  x 
C_  I ) )
104102, 103ax-mp 5 . . . . . . . . . 10  |-  ( ( x  u.  { z } )  C_  I  ->  x  C_  I )
105104imim1i 58 . . . . . . . . 9  |-  ( ( x  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  ->  ( ( x  u.  { z } )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )
106 oveq1 6101 . . . . . . . . . . . 12  |-  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  -> 
( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) ) ( .r
`  P ) ( ( Y `  z
)  .^  ( V `  z ) ) )  =  ( ( G 
gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ( .r `  P ) ( ( Y `  z )  .^  ( V `  z )
) ) )
107 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( Base `  P )  =  (
Base `  P )
1082adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  I  e.  W
)
10998adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  R  e.  Ring )
1107adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  Y : I --> NN0 )
111110ffvelrnda 5846 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  I
)  ->  ( Y `  i )  e.  NN0 )
112 0nn0 10597 . . . . . . . . . . . . . . . . . 18  |-  0  e.  NN0
113 ifcl 3834 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Y `  i
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( i  e.  x ,  ( Y `  i ) ,  0 )  e.  NN0 )
114111, 112, 113sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  I
)  ->  if (
i  e.  x ,  ( Y `  i
) ,  0 )  e.  NN0 )
115 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )
116114, 115fmptd 5870 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) : I --> NN0 )
117 nn0suppOLD 10637 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) : I --> NN0  ->  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `
 i ) ,  0 ) ) "
( _V  \  {
0 } ) )  =  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) " NN ) )
118116, 117syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) " ( _V  \  { 0 } ) )  =  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) )
" NN ) )
119 simprll 761 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  x  e.  Fin )
120 eldifn 3482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  e.  ( I  \  x )  ->  -.  i  e.  x )
121120adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  ( I  \  x ) )  ->  -.  i  e.  x )
122 iffalse 3802 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  i  e.  x  ->  if ( i  e.  x ,  ( Y `  i ) ,  0 )  =  0 )
123121, 122syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  ( I  \  x ) )  ->  if (
i  e.  x ,  ( Y `  i
) ,  0 )  =  0 )
124123suppss2OLD 6318 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) " ( _V  \  { 0 } ) )  C_  x
)
125 ssfi 7536 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  Fin  /\  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) )
" ( _V  \  { 0 } ) )  C_  x )  ->  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) " ( _V 
\  { 0 } ) )  e.  Fin )
126119, 124, 125syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) " ( _V  \  { 0 } ) )  e.  Fin )
127118, 126eqeltrrd 2518 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) " NN )  e.  Fin )
1283psrbag 17434 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  W  ->  (
( i  e.  I  |->  if ( i  e.  x ,  ( Y `
 i ) ,  0 ) )  e.  D  <->  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) : I --> NN0  /\  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) )
" NN )  e. 
Fin ) ) )
129108, 128syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )  e.  D  <->  ( (
i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) : I --> NN0  /\  ( `' ( i  e.  I  |->  if ( i  e.  x ,  ( Y `
 i ) ,  0 ) ) " NN )  e.  Fin ) ) )
130116, 127, 129mpbir2and 913 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) )  e.  D )
131 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( .r
`  P )  =  ( .r `  P
)
132 ssun2 3523 . . . . . . . . . . . . . . . . . . . . . 22  |-  { z }  C_  ( x  u.  { z } )
133 simprr 756 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( x  u. 
{ z } ) 
C_  I )
134132, 133syl5ss 3370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  { z } 
C_  I )
135 vex 2978 . . . . . . . . . . . . . . . . . . . . . 22  |-  z  e. 
_V
136135snss 4002 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  I  <->  { z }  C_  I )
137134, 136sylibr 212 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  z  e.  I
)
138110, 137ffvelrnd 5847 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( Y `  z )  e.  NN0 )
139138adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  I
)  ->  ( Y `  z )  e.  NN0 )
140 ifcl 3834 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Y `  z
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( i  =  z ,  ( Y `  z ) ,  0 )  e.  NN0 )
141139, 112, 140sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  I
)  ->  if (
i  =  z ,  ( Y `  z
) ,  0 )  e.  NN0 )
142 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z
) ,  0 ) )  =  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z
) ,  0 ) )
143141, 142fmptd 5870 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) : I --> NN0 )
144 nn0suppOLD 10637 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) : I --> NN0  ->  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) ) "
( _V  \  {
0 } ) )  =  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) " NN ) )
145143, 144syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) " ( _V  \  { 0 } ) )  =  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) )
" NN ) )
146 snfi 7393 . . . . . . . . . . . . . . . . . 18  |-  { z }  e.  Fin
147 eldifsni 4004 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( I  \  { z } )  ->  i  =/=  z
)
148147adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  ( I  \  { z } ) )  -> 
i  =/=  z )
149148neneqd 2627 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  ( I  \  { z } ) )  ->  -.  i  =  z
)
150 iffalse 3802 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  i  =  z  ->  if ( i  =  z ,  ( Y `  z ) ,  0 )  =  0 )
151149, 150syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  ( I  \  { z } ) )  ->  if ( i  =  z ,  ( Y `  z ) ,  0 )  =  0 )
152151suppss2OLD 6318 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) " ( _V  \  { 0 } ) )  C_  { z } )
153 ssfi 7536 . . . . . . . . . . . . . . . . . 18  |-  ( ( { z }  e.  Fin  /\  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) " ( _V  \  { 0 } ) )  C_  { z } )  ->  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) )
" ( _V  \  { 0 } ) )  e.  Fin )
154146, 152, 153sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) " ( _V  \  { 0 } ) )  e.  Fin )
155145, 154eqeltrrd 2518 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) " NN )  e.  Fin )
1563psrbag 17434 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  W  ->  (
( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) )  e.  D  <->  ( ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z
) ,  0 ) ) : I --> NN0  /\  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) )
" NN )  e. 
Fin ) ) )
157108, 156syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z
) ,  0 ) )  e.  D  <->  ( (
i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) : I --> NN0  /\  ( `' ( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) ) " NN )  e.  Fin ) ) )
158143, 155, 157mpbir2and 913 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) )  e.  D )
15993, 107, 94, 95, 3, 108, 109, 130, 131, 158mplmonmul 17546 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) ) ( .r
`  P ) ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )  oF  +  ( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) ) ) ,  .1.  ,  .0.  ) ) )
160 mplcoe2.m . . . . . . . . . . . . . . . 16  |-  .^  =  (.g
`  G )
161 mplcoe2.v . . . . . . . . . . . . . . . 16  |-  V  =  ( I mVar  R )
16293, 3, 94, 95, 108, 49, 160, 161, 109, 137, 138mplcoe3 17548 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( ( Y `  z
)  .^  ( V `  z ) ) )
163162oveq2d 6110 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) ) ( .r
`  P ) ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) ,  .1.  ,  .0.  ) ) )  =  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) ) ( .r
`  P ) ( ( Y `  z
)  .^  ( V `  z ) ) ) )
164 eqidd 2444 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) )  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) )
165 eqidd 2444 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) )  =  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) )
166108, 114, 141, 164, 165offval2 6339 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )  oF  +  ( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) ) )  =  ( i  e.  I  |->  ( if ( i  e.  x ,  ( Y `  i
) ,  0 )  +  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) ) )
167111adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  ( Y `  i )  e.  NN0 )
168167nn0cnd 10641 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  ( Y `  i )  e.  CC )
169168addid2d 9573 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  ( 0  +  ( Y `  i
) )  =  ( Y `  i ) )
170 elsni 3905 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( i  e.  { z }  ->  i  =  z )
171170adantl 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  i  =  z )
172 simprlr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  -.  z  e.  x )
173172ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  -.  z  e.  x )
174171, 173eqneltrd 2536 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  -.  i  e.  x )
175174, 122syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  if ( i  e.  x ,  ( Y `  i ) ,  0 )  =  0 )
176 iftrue 3800 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( i  =  z  ->  if ( i  =  z ,  ( Y `  z ) ,  0 )  =  ( Y `
 z ) )
177171, 176syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  if ( i  =  z ,  ( Y `  z ) ,  0 )  =  ( Y `  z
) )
178171fveq2d 5698 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  ( Y `  i )  =  ( Y `  z ) )
179177, 178eqtr4d 2478 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  if ( i  =  z ,  ( Y `  z ) ,  0 )  =  ( Y `  i
) )
180175, 179oveq12d 6112 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  ( if ( i  e.  x ,  ( Y `  i
) ,  0 )  +  if ( i  =  z ,  ( Y `  z ) ,  0 ) )  =  ( 0  +  ( Y `  i
) ) )
181 simpr 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  i  e.  {
z } )
182132, 181sseldi 3357 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  i  e.  ( x  u.  { z } ) )
183 iftrue 3800 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( x  u. 
{ z } )  ->  if ( i  e.  ( x  u. 
{ z } ) ,  ( Y `  i ) ,  0 )  =  ( Y `
 i ) )
184182, 183syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  if ( i  e.  ( x  u. 
{ z } ) ,  ( Y `  i ) ,  0 )  =  ( Y `
 i ) )
185169, 180, 1843eqtr4d 2485 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  i  e.  { z } )  ->  ( if ( i  e.  x ,  ( Y `  i
) ,  0 )  +  if ( i  =  z ,  ( Y `  z ) ,  0 ) )  =  if ( i  e.  ( x  u. 
{ z } ) ,  ( Y `  i ) ,  0 ) )
186114adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  if ( i  e.  x ,  ( Y `  i ) ,  0 )  e.  NN0 )
187186nn0cnd 10641 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  if ( i  e.  x ,  ( Y `  i ) ,  0 )  e.  CC )
188187addid1d 9572 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  ( if ( i  e.  x ,  ( Y `  i ) ,  0 )  +  0 )  =  if ( i  e.  x ,  ( Y `  i ) ,  0 ) )
189 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  -.  i  e.  { z } )
190 elsn 3894 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( i  e.  { z }  <-> 
i  =  z )
191189, 190sylnib 304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  -.  i  =  z )
192191, 150syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  if ( i  =  z ,  ( Y `  z ) ,  0 )  =  0 )
193192oveq2d 6110 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  ( if ( i  e.  x ,  ( Y `  i ) ,  0 )  +  if ( i  =  z ,  ( Y `  z
) ,  0 ) )  =  ( if ( i  e.  x ,  ( Y `  i ) ,  0 )  +  0 ) )
194 biorf 405 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  i  e.  { z }  ->  ( i  e.  x  <->  ( i  e. 
{ z }  \/  i  e.  x )
) )
195 elun 3500 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( i  e.  ( x  u. 
{ z } )  <-> 
( i  e.  x  \/  i  e.  { z } ) )
196 orcom 387 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( i  e.  x  \/  i  e.  { z } )  <->  ( i  e.  { z }  \/  i  e.  x )
)
197195, 196bitri 249 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( i  e.  ( x  u. 
{ z } )  <-> 
( i  e.  {
z }  \/  i  e.  x ) )
198194, 197syl6rbbr 264 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  i  e.  { z }  ->  ( i  e.  ( x  u.  {
z } )  <->  i  e.  x ) )
199198adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  (
i  e.  ( x  u.  { z } )  <->  i  e.  x
) )
200199ifbid 3814 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 )  =  if ( i  e.  x ,  ( Y `
 i ) ,  0 ) )
201188, 193, 2003eqtr4d 2485 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  I
) )  /\  i  e.  I )  /\  -.  i  e.  { z } )  ->  ( if ( i  e.  x ,  ( Y `  i ) ,  0 )  +  if ( i  =  z ,  ( Y `  z
) ,  0 ) )  =  if ( i  e.  ( x  u.  { z } ) ,  ( Y `
 i ) ,  0 ) )
202185, 201pm2.61dan 789 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  i  e.  I
)  ->  ( if ( i  e.  x ,  ( Y `  i ) ,  0 )  +  if ( i  =  z ,  ( Y `  z
) ,  0 ) )  =  if ( i  e.  ( x  u.  { z } ) ,  ( Y `
 i ) ,  0 ) )
203202mpteq2dva 4381 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( i  e.  I  |->  ( if ( i  e.  x ,  ( Y `  i
) ,  0 )  +  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) )  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `
 i ) ,  0 ) ) )
204166, 203eqtrd 2475 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )  oF  +  ( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) ) )  =  ( i  e.  I  |->  if ( i  e.  ( x  u. 
{ z } ) ,  ( Y `  i ) ,  0 ) ) )
205204eqeq2d 2454 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( y  =  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) )  oF  +  ( i  e.  I  |->  if ( i  =  z ,  ( Y `  z ) ,  0 ) ) )  <->  y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  {
z } ) ,  ( Y `  i
) ,  0 ) ) ) )
206205ifbid 3814 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  if ( y  =  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )  oF  +  ( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) ) ) ,  .1.  ,  .0.  )  =  if (
y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)
207206mpteq2dv 4382 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( y  e.  D  |->  if ( y  =  ( ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) )  oF  +  ( i  e.  I  |->  if ( i  =  z ,  ( Y `
 z ) ,  0 ) ) ) ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) ) )
208159, 163, 2073eqtr3rd 2484 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u. 
{ z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) ) ( .r
`  P ) ( ( Y `  z
)  .^  ( V `  z ) ) ) )
20949, 107mgpbas 16600 . . . . . . . . . . . . . 14  |-  ( Base `  P )  =  (
Base `  G )
21049, 131mgpplusg 16598 . . . . . . . . . . . . . 14  |-  ( .r
`  P )  =  ( +g  `  G
)
21193mplcrng 17535 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  W  /\  R  e.  CRing )  ->  P  e.  CRing )
2122, 96, 211syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  CRing )
21349crngmgp 16656 . . . . . . . . . . . . . . . 16  |-  ( P  e.  CRing  ->  G  e. CMnd )
214212, 213syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e. CMnd )
215214adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  G  e. CMnd )
216102, 133syl5ss 3370 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  x  C_  I
)
217216sselda 3359 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  k  e.  x
)  ->  k  e.  I )
218 cmnmnd 16295 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e. CMnd  ->  G  e.  Mnd )
219214, 218syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  G  e.  Mnd )
220219adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  I )  ->  G  e.  Mnd )
2217ffvelrnda 5846 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  I )  ->  ( Y `  k )  e.  NN0 )
2222adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  I )  ->  I  e.  W )
22398adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  I )  ->  R  e.  Ring )
224 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  I )  ->  k  e.  I )
22593, 161, 107, 222, 223, 224mvrcl 17531 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  I )  ->  ( V `  k )  e.  ( Base `  P
) )
226209, 160mulgnn0cl 15646 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Mnd  /\  ( Y `  k )  e.  NN0  /\  ( V `  k )  e.  ( Base `  P
) )  ->  (
( Y `  k
)  .^  ( V `  k ) )  e.  ( Base `  P
) )
227220, 221, 225, 226syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  I )  ->  (
( Y `  k
)  .^  ( V `  k ) )  e.  ( Base `  P
) )
228227adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  k  e.  I
)  ->  ( ( Y `  k )  .^  ( V `  k
) )  e.  (
Base `  P )
)
229217, 228syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  /\  k  e.  x
)  ->  ( ( Y `  k )  .^  ( V `  k
) )  e.  (
Base `  P )
)
230219adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  G  e.  Mnd )
23193, 161, 107, 108, 109, 137mvrcl 17531 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( V `  z )  e.  (
Base `  P )
)
232209, 160mulgnn0cl 15646 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Mnd  /\  ( Y `  z )  e.  NN0  /\  ( V `  z )  e.  ( Base `  P
) )  ->  (
( Y `  z
)  .^  ( V `  z ) )  e.  ( Base `  P
) )
233230, 138, 231, 232syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( Y `
 z )  .^  ( V `  z ) )  e.  ( Base `  P ) )
234 fveq2 5694 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( Y `  k )  =  ( Y `  z ) )
235 fveq2 5694 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( V `  k )  =  ( V `  z ) )
236234, 235oveq12d 6112 . . . . . . . . . . . . . 14  |-  ( k  =  z  ->  (
( Y `  k
)  .^  ( V `  k ) )  =  ( ( Y `  z )  .^  ( V `  z )
) )
237209, 210, 215, 119, 229, 137, 172, 233, 236gsumunsn 16456 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( G  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) )  =  ( ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ( .r `  P ) ( ( Y `  z ) 
.^  ( V `  z ) ) ) )
238208, 237eqeq12d 2457 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) )  <->  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) ) ( .r
`  P ) ( ( Y `  z
)  .^  ( V `  z ) ) )  =  ( ( G 
gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ( .r `  P ) ( ( Y `  z )  .^  ( V `  z )
) ) ) )
239106, 238syl5ibr 221 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  I ) )  ->  ( ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  -> 
( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  {
z } ) ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) )
240239expr 615 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( x  u. 
{ z } ) 
C_  I  ->  (
( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) )  -> 
( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  {
z } ) ,  ( Y `  i
) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) ) )
241240a2d 26 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( ( x  u.  { z } )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  ->  ( ( x  u.  { z } )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) ) )
242105, 241syl5 32 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( x  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  ->  ( ( x  u.  { z } )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) ) )
243242expcom 435 . . . . . . 7  |-  ( ( x  e.  Fin  /\  -.  z  e.  x
)  ->  ( ph  ->  ( ( x  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )  ->  ( ( x  u.  { z } )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) ) ) )
244243a2d 26 . . . . . 6  |-  ( ( x  e.  Fin  /\  -.  z  e.  x
)  ->  ( ( ph  ->  ( x  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  x ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  x  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )  ->  ( ph  ->  ( ( x  u. 
{ z } ) 
C_  I  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( x  u.  { z } ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) ) ) ) ) )
24556, 68, 80, 92, 101, 244findcard2s 7556 . . . . 5  |-  ( ( `' Y " NN )  e.  Fin  ->  ( ph  ->  ( ( `' Y " NN ) 
C_  I  ->  (
y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `  i ) ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) ) )
24632, 245mpcom 36 . . . 4  |-  ( ph  ->  ( ( `' Y " NN )  C_  I  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) ) )
24731, 246mpd 15 . . 3  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
248 resmpt 5159 . . . . 5  |-  ( ( `' Y " NN ) 
C_  I  ->  (
( k  e.  I  |->  ( ( Y `  k )  .^  ( V `  k )
) )  |`  ( `' Y " NN ) )  =  ( k  e.  ( `' Y " NN )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) )
24931, 248syl 16 . . . 4  |-  ( ph  ->  ( ( k  e.  I  |->  ( ( Y `
 k )  .^  ( V `  k ) ) )  |`  ( `' Y " NN ) )  =  ( k  e.  ( `' Y " NN )  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) ) )
250249oveq2d 6110 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( k  e.  I  |->  ( ( Y `
 k )  .^  ( V `  k ) ) )  |`  ( `' Y " NN ) ) )  =  ( G  gsumg  ( k  e.  ( `' Y " NN ) 
|->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
251 eqid 2443 . . . . 5  |-  ( k  e.  I  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) )  =  ( k  e.  I  |->  ( ( Y `
 k )  .^  ( V `  k ) ) )
252227, 251fmptd 5870 . . . 4  |-  ( ph  ->  ( k  e.  I  |->  ( ( Y `  k )  .^  ( V `  k )
) ) : I --> ( Base `  P
) )
2537, 16suppssrOLD 5840 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( I  \  ( `' Y " NN ) ) )  ->  ( Y `  k )  =  0 )
254253oveq1d 6109 . . . . . 6  |-  ( (
ph  /\  k  e.  ( I  \  ( `' Y " NN ) ) )  ->  (
( Y `  k
)  .^  ( V `  k ) )  =  ( 0  .^  ( V `  k )
) )
255 eldifi 3481 . . . . . . . 8  |-  ( k  e.  ( I  \ 
( `' Y " NN ) )  ->  k  e.  I )
256255, 225sylan2 474 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( I  \  ( `' Y " NN ) ) )  ->  ( V `  k )  e.  ( Base `  P
) )
257209, 51, 160mulg0 15635 . . . . . . 7  |-  ( ( V `  k )  e.  ( Base `  P
)  ->  ( 0 
.^  ( V `  k ) )  =  ( 1r `  P
) )
258256, 257syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  ( I  \  ( `' Y " NN ) ) )  ->  (
0  .^  ( V `  k ) )  =  ( 1r `  P
) )
259254, 258eqtrd 2475 . . . . 5  |-  ( (
ph  /\  k  e.  ( I  \  ( `' Y " NN ) ) )  ->  (
( Y `  k
)  .^  ( V `  k ) )  =  ( 1r `  P
) )
260259suppss2OLD 6318 . . . 4  |-  ( ph  ->  ( `' ( k  e.  I  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) )
" ( _V  \  { ( 1r `  P ) } ) )  C_  ( `' Y " NN ) )
261 ssfi 7536 . . . . 5  |-  ( ( ( `' Y " NN )  e.  Fin  /\  ( `' ( k  e.  I  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) )
" ( _V  \  { ( 1r `  P ) } ) )  C_  ( `' Y " NN ) )  ->  ( `' ( k  e.  I  |->  ( ( Y `  k
)  .^  ( V `  k ) ) )
" ( _V  \  { ( 1r `  P ) } ) )  e.  Fin )
26232, 260, 261syl2anc 661 . . . 4  |-  ( ph  ->  ( `' ( k  e.  I  |->  ( ( Y `  k ) 
.^  ( V `  k ) ) )
" ( _V  \  { ( 1r `  P ) } ) )  e.  Fin )
263209, 51, 214, 2, 252, 260, 262gsumresOLD 16402 . . 3  |-  ( ph  ->  ( G  gsumg  ( ( k  e.  I  |->  ( ( Y `
 k )  .^  ( V `  k ) ) )  |`  ( `' Y " NN ) ) )  =  ( G  gsumg  ( k  e.  I  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
264247, 250, 2633eqtr2d 2481 . 2  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  ( i  e.  I  |->  if ( i  e.  ( `' Y " NN ) ,  ( Y `
 i ) ,  0 ) ) ,  .1.  ,  .0.  )
)  =  ( G 
gsumg  ( k  e.  I  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
26527, 264eqtrd 2475 1  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) )  =  ( G  gsumg  ( k  e.  I  |->  ( ( Y `  k )  .^  ( V `  k )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2609   {crab 2722   _Vcvv 2975    \ cdif 3328    u. cun 3329    C_ wss 3331   (/)c0 3640   ifcif 3794   {csn 3880    e. cmpt 4353    X. cxp 4841   `'ccnv 4842   dom cdm 4843    |` cres 4845   "cima 4846   -->wf 5417   ` cfv 5421  (class class class)co 6094    oFcof 6321    ^m cmap 7217   Fincfn 7313   0cc0 9285    + caddc 9288   NNcn 10325   NN0cn0 10582   Basecbs 14177   .rcmulr 14242   0gc0g 14381    gsumg cgsu 14382   Mndcmnd 15412  .gcmg 15417  CMndccmn 16280  mulGrpcmgp 16594   1rcur 16606   Ringcrg 16648   CRingccrg 16649   mVar cmvr 17422   mPoly cmpl 17423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-oi 7727  df-card 8112  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-n0 10583  df-z 10650  df-uz 10865  df-fz 11441  df-fzo 11552  df-seq 11810  df-hash 12107  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-sca 14257  df-vsca 14258  df-tset 14260  df-0g 14383  df-gsum 14384  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-mhm 15467  df-submnd 15468  df-grp 15548  df-minusg 15549  df-mulg 15551  df-subg 15681  df-ghm 15748  df-cntz 15838  df-cmn 16282  df-abl 16283  df-mgp 16595  df-ur 16607  df-rng 16650  df-cring 16651  df-subrg 16866  df-psr 17426  df-mvr 17427  df-mpl 17428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator