MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe1 Structured version   Visualization version   Unicode version

Theorem mplcoe1 18766
Description: Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplcoe1.p  |-  P  =  ( I mPoly  R )
mplcoe1.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplcoe1.z  |-  .0.  =  ( 0g `  R )
mplcoe1.o  |-  .1.  =  ( 1r `  R )
mplcoe1.i  |-  ( ph  ->  I  e.  W )
mplcoe1.b  |-  B  =  ( Base `  P
)
mplcoe1.n  |-  .x.  =  ( .s `  P )
mplcoe1.r  |-  ( ph  ->  R  e.  Ring )
mplcoe1.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
mplcoe1  |-  ( ph  ->  X  =  ( P 
gsumg  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
Distinct variable groups:    y, k,  .1.    B, k    f, k, y, I    ph, k,
y    R, f, y    D, k, y    P, k    .0. , f, k, y    f, X, k, y    k, W, y    .x. , k
Allowed substitution hints:    ph( f)    B( y, f)    D( f)    P( y, f)    R( k)    .x. ( y,
f)    .1. ( f)    W( f)

Proof of Theorem mplcoe1
Dummy variables  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . . . . . 6  |-  P  =  ( I mPoly  R )
2 eqid 2471 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
3 mplcoe1.b . . . . . 6  |-  B  =  ( Base `  P
)
4 mplcoe1.d . . . . . 6  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
5 mplcoe1.x . . . . . 6  |-  ( ph  ->  X  e.  B )
61, 2, 3, 4, 5mplelf 18734 . . . . 5  |-  ( ph  ->  X : D --> ( Base `  R ) )
76feqmptd 5932 . . . 4  |-  ( ph  ->  X  =  ( y  e.  D  |->  ( X `
 y ) ) )
8 iftrue 3878 . . . . . . 7  |-  ( y  e.  ( X supp  .0.  )  ->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y ) )
98adantl 473 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  y  e.  ( X supp  .0.  )
)  ->  if (
y  e.  ( X supp 
.0.  ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y
) )
10 eldif 3400 . . . . . . . 8  |-  ( y  e.  ( D  \ 
( X supp  .0.  )
)  <->  ( y  e.  D  /\  -.  y  e.  ( X supp  .0.  )
) )
11 ifid 3909 . . . . . . . . 9  |-  if ( y  e.  ( X supp 
.0.  ) ,  ( X `  y ) ,  ( X `  y ) )  =  ( X `  y
)
12 ssid 3437 . . . . . . . . . . . 12  |-  ( X supp 
.0.  )  C_  ( X supp  .0.  )
1312a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( X supp  .0.  )  C_  ( X supp  .0.  )
)
14 ovex 6336 . . . . . . . . . . . . 13  |-  ( NN0 
^m  I )  e. 
_V
154, 14rabex2 4552 . . . . . . . . . . . 12  |-  D  e. 
_V
1615a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  _V )
17 mplcoe1.z . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  R )
18 fvex 5889 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
1917, 18eqeltri 2545 . . . . . . . . . . . 12  |-  .0.  e.  _V
2019a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  .0.  e.  _V )
216, 13, 16, 20suppssr 6965 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( D  \  ( X supp  .0.  ) ) )  ->  ( X `  y )  =  .0.  )
2221ifeq2d 3891 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( D  \  ( X supp  .0.  ) ) )  ->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  ( X `  y ) )  =  if ( y  e.  ( X supp 
.0.  ) ,  ( X `  y ) ,  .0.  ) )
2311, 22syl5reqr 2520 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( D  \  ( X supp  .0.  ) ) )  ->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y ) )
2410, 23sylan2br 484 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  D  /\  -.  y  e.  ( X supp  .0.  )
) )  ->  if ( y  e.  ( X supp  .0.  ) , 
( X `  y
) ,  .0.  )  =  ( X `  y ) )
2524anassrs 660 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  -.  y  e.  ( X supp  .0.  ) )  ->  if ( y  e.  ( X supp  .0.  ) , 
( X `  y
) ,  .0.  )  =  ( X `  y ) )
269, 25pm2.61dan 808 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  if ( y  e.  ( X supp  .0.  ) , 
( X `  y
) ,  .0.  )  =  ( X `  y ) )
2726mpteq2dva 4482 . . . 4  |-  ( ph  ->  ( y  e.  D  |->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  ( X `  y ) ) )
287, 27eqtr4d 2508 . . 3  |-  ( ph  ->  X  =  ( y  e.  D  |->  if ( y  e.  ( X supp 
.0.  ) ,  ( X `  y ) ,  .0.  ) ) )
29 suppssdm 6946 . . . . 5  |-  ( X supp 
.0.  )  C_  dom  X
30 fdm 5745 . . . . . 6  |-  ( X : D --> ( Base `  R )  ->  dom  X  =  D )
316, 30syl 17 . . . . 5  |-  ( ph  ->  dom  X  =  D )
3229, 31syl5sseq 3466 . . . 4  |-  ( ph  ->  ( X supp  .0.  )  C_  D )
33 eqid 2471 . . . . . . . . 9  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
34 eqid 2471 . . . . . . . . 9  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
351, 33, 34, 17, 3mplelbas 18731 . . . . . . . 8  |-  ( X  e.  B  <->  ( X  e.  ( Base `  (
I mPwSer  R ) )  /\  X finSupp  .0.  ) )
3635simprbi 471 . . . . . . 7  |-  ( X  e.  B  ->  X finSupp  .0.  )
375, 36syl 17 . . . . . 6  |-  ( ph  ->  X finSupp  .0.  )
3837fsuppimpd 7908 . . . . 5  |-  ( ph  ->  ( X supp  .0.  )  e.  Fin )
39 sseq1 3439 . . . . . . . 8  |-  ( w  =  (/)  ->  ( w 
C_  D  <->  (/)  C_  D
) )
40 mpteq1 4476 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  (/)  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )
41 mpt0 5715 . . . . . . . . . . . 12  |-  ( k  e.  (/)  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  (/)
4240, 41syl6eq 2521 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  (/) )
4342oveq2d 6324 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( P 
gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P 
gsumg  (/) ) )
44 eqid 2471 . . . . . . . . . . 11  |-  ( 0g
`  P )  =  ( 0g `  P
)
4544gsum0 16599 . . . . . . . . . 10  |-  ( P 
gsumg  (/) )  =  ( 0g
`  P )
4643, 45syl6eq 2521 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( P 
gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( 0g
`  P ) )
47 noel 3726 . . . . . . . . . . . 12  |-  -.  y  e.  (/)
48 eleq2 2538 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( y  e.  w  <->  y  e.  (/) ) )
4947, 48mtbiri 310 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  -.  y  e.  w )
5049iffalsed 3883 . . . . . . . . . 10  |-  ( w  =  (/)  ->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )  =  .0.  )
5150mpteq2dv 4483 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  =  ( y  e.  D  |->  .0.  )
)
5246, 51eqeq12d 2486 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  <->  ( 0g `  P )  =  ( y  e.  D  |->  .0.  ) ) )
5339, 52imbi12d 327 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) )  <->  ( (/)  C_  D  ->  ( 0g `  P
)  =  ( y  e.  D  |->  .0.  )
) ) )
5453imbi2d 323 . . . . . 6  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) ) ) )  <-> 
( ph  ->  ( (/)  C_  D  ->  ( 0g `  P )  =  ( y  e.  D  |->  .0.  ) ) ) ) )
55 sseq1 3439 . . . . . . . 8  |-  ( w  =  x  ->  (
w  C_  D  <->  x  C_  D
) )
56 mpteq1 4476 . . . . . . . . . 10  |-  ( w  =  x  ->  (
k  e.  w  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) )  =  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )
5756oveq2d 6324 . . . . . . . . 9  |-  ( w  =  x  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P 
gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
58 eleq2 2538 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
y  e.  w  <->  y  e.  x ) )
5958ifbid 3894 . . . . . . . . . 10  |-  ( w  =  x  ->  if ( y  e.  w ,  ( X `  y ) ,  .0.  )  =  if (
y  e.  x ,  ( X `  y
) ,  .0.  )
)
6059mpteq2dv 4483 . . . . . . . . 9  |-  ( w  =  x  ->  (
y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )
6157, 60eqeq12d 2486 . . . . . . . 8  |-  ( w  =  x  ->  (
( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  <->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) )
6255, 61imbi12d 327 . . . . . . 7  |-  ( w  =  x  ->  (
( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) )  <->  ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) ) )
6362imbi2d 323 . . . . . 6  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) ) )  <->  ( ph  ->  ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) ) ) ) )
64 sseq1 3439 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ z } )  ->  ( w  C_  D 
<->  ( x  u.  {
z } )  C_  D ) )
65 mpteq1 4476 . . . . . . . . . 10  |-  ( w  =  ( x  u. 
{ z } )  ->  ( k  e.  w  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  ( x  u.  {
z } )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )
6665oveq2d 6324 . . . . . . . . 9  |-  ( w  =  ( x  u. 
{ z } )  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
67 eleq2 2538 . . . . . . . . . . 11  |-  ( w  =  ( x  u. 
{ z } )  ->  ( y  e.  w  <->  y  e.  ( x  u.  { z } ) ) )
6867ifbid 3894 . . . . . . . . . 10  |-  ( w  =  ( x  u. 
{ z } )  ->  if ( y  e.  w ,  ( X `  y ) ,  .0.  )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
6968mpteq2dv 4483 . . . . . . . . 9  |-  ( w  =  ( x  u. 
{ z } )  ->  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  ) ) )
7066, 69eqeq12d 2486 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( P 
gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  <->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) )
7164, 70imbi12d 327 . . . . . . 7  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( w 
C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) )  <->  ( (
x  u.  { z } )  C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) )
7271imbi2d 323 . . . . . 6  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) ) )  <->  ( ph  ->  ( ( x  u. 
{ z } ) 
C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) ) )
73 sseq1 3439 . . . . . . . 8  |-  ( w  =  ( X supp  .0.  )  ->  ( w  C_  D 
<->  ( X supp  .0.  )  C_  D ) )
74 mpteq1 4476 . . . . . . . . . 10  |-  ( w  =  ( X supp  .0.  )  ->  ( k  e.  w  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )
7574oveq2d 6324 . . . . . . . . 9  |-  ( w  =  ( X supp  .0.  )  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) ) )
76 eleq2 2538 . . . . . . . . . . 11  |-  ( w  =  ( X supp  .0.  )  ->  ( y  e.  w  <->  y  e.  ( X supp  .0.  ) )
)
7776ifbid 3894 . . . . . . . . . 10  |-  ( w  =  ( X supp  .0.  )  ->  if ( y  e.  w ,  ( X `  y ) ,  .0.  )  =  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  ) )
7877mpteq2dv 4483 . . . . . . . . 9  |-  ( w  =  ( X supp  .0.  )  ->  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  ) ) )
7975, 78eqeq12d 2486 . . . . . . . 8  |-  ( w  =  ( X supp  .0.  )  ->  ( ( P 
gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  <->  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( X supp 
.0.  ) ,  ( X `  y ) ,  .0.  ) ) ) )
8073, 79imbi12d 327 . . . . . . 7  |-  ( w  =  ( X supp  .0.  )  ->  ( ( w 
C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) )  <->  ( ( X supp  .0.  )  C_  D  ->  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  ) ) ) ) )
8180imbi2d 323 . . . . . 6  |-  ( w  =  ( X supp  .0.  )  ->  ( ( ph  ->  ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) ) )  <->  ( ph  ->  ( ( X supp  .0.  )  C_  D  ->  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  ) ) ) ) ) )
82 mplcoe1.i . . . . . . . . 9  |-  ( ph  ->  I  e.  W )
83 mplcoe1.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
84 ringgrp 17863 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  R  e. 
Grp )
8583, 84syl 17 . . . . . . . . 9  |-  ( ph  ->  R  e.  Grp )
861, 4, 17, 44, 82, 85mpl0 18742 . . . . . . . 8  |-  ( ph  ->  ( 0g `  P
)  =  ( D  X.  {  .0.  }
) )
87 fconstmpt 4883 . . . . . . . 8  |-  ( D  X.  {  .0.  }
)  =  ( y  e.  D  |->  .0.  )
8886, 87syl6eq 2521 . . . . . . 7  |-  ( ph  ->  ( 0g `  P
)  =  ( y  e.  D  |->  .0.  )
)
8988a1d 25 . . . . . 6  |-  ( ph  ->  ( (/)  C_  D  -> 
( 0g `  P
)  =  ( y  e.  D  |->  .0.  )
) )
90 ssun1 3588 . . . . . . . . . . 11  |-  x  C_  ( x  u.  { z } )
91 sstr2 3425 . . . . . . . . . . 11  |-  ( x 
C_  ( x  u. 
{ z } )  ->  ( ( x  u.  { z } )  C_  D  ->  x 
C_  D ) )
9290, 91ax-mp 5 . . . . . . . . . 10  |-  ( ( x  u.  { z } )  C_  D  ->  x  C_  D )
9392imim1i 59 . . . . . . . . 9  |-  ( ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) )  ->  (
( x  u.  {
z } )  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) )
94 oveq1 6315 . . . . . . . . . . . 12  |-  ( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  ->  ( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
95 eqid 2471 . . . . . . . . . . . . . 14  |-  ( +g  `  P )  =  ( +g  `  P )
961mplring 18753 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  Ring )
9782, 83, 96syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  Ring )
98 ringcmn 17889 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Ring  ->  P  e. CMnd
)
9997, 98syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e. CMnd )
10099adantr 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  P  e. CMnd )
101 simprll 780 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  x  e.  Fin )
102 simprr 774 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( x  u. 
{ z } ) 
C_  D )
103102unssad 3602 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  x  C_  D
)
104103sselda 3418 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  k  e.  x
)  ->  k  e.  D )
10582adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  I  e.  W )
10683adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  R  e.  Ring )
1071mpllmod 18752 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  LMod )
108105, 106, 107syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  D )  ->  P  e.  LMod )
1096ffvelrnda 6037 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  ( X `  k )  e.  ( Base `  R
) )
1101, 82, 83mplsca 18746 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  R  =  (Scalar `  P ) )
111110adantr 472 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  D )  ->  R  =  (Scalar `  P )
)
112111fveq2d 5883 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  ( Base `  R )  =  ( Base `  (Scalar `  P ) ) )
113109, 112eleqtrd 2551 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  D )  ->  ( X `  k )  e.  ( Base `  (Scalar `  P ) ) )
114 mplcoe1.o . . . . . . . . . . . . . . . . . 18  |-  .1.  =  ( 1r `  R )
115 simpr 468 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  k  e.  D )
1161, 3, 17, 114, 4, 105, 106, 115mplmon 18764 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  D )  ->  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  e.  B
)
117 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  (Scalar `  P )  =  (Scalar `  P )
118 mplcoe1.n . . . . . . . . . . . . . . . . . 18  |-  .x.  =  ( .s `  P )
119 eqid 2471 . . . . . . . . . . . . . . . . . 18  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
1203, 117, 118, 119lmodvscl 18186 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  LMod  /\  ( X `  k )  e.  ( Base `  (Scalar `  P ) )  /\  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  e.  B
)  ->  ( ( X `  k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  e.  B )
121108, 113, 116, 120syl3anc 1292 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  D )  ->  (
( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) )  e.  B
)
122121adantlr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  k  e.  D
)  ->  ( ( X `  k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  e.  B )
123104, 122syldan 478 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  k  e.  x
)  ->  ( ( X `  k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  e.  B )
124 vex 3034 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
125124a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  z  e.  _V )
126 simprlr 781 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  -.  z  e.  x )
12782, 83, 107syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  LMod )
128127adantr 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  P  e.  LMod )
1296adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  X : D --> ( Base `  R )
)
130102unssbd 3603 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  { z } 
C_  D )
131124snss 4087 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  D  <->  { z }  C_  D )
132130, 131sylibr 217 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  z  e.  D
)
133129, 132ffvelrnd 6038 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( X `  z )  e.  (
Base `  R )
)
134110adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  R  =  (Scalar `  P ) )
135134fveq2d 5883 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
136133, 135eleqtrd 2551 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( X `  z )  e.  (
Base `  (Scalar `  P
) ) )
13782adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  I  e.  W
)
13883adantr 472 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  R  e.  Ring )
1391, 3, 17, 114, 4, 137, 138, 132mplmon 18764 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) )  e.  B )
1403, 117, 118, 119lmodvscl 18186 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  LMod  /\  ( X `  z )  e.  ( Base `  (Scalar `  P ) )  /\  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) )  e.  B
)  ->  ( ( X `  z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  e.  B )
141128, 136, 139, 140syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  e.  B )
142 fveq2 5879 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( X `  k )  =  ( X `  z ) )
143 equequ2 1876 . . . . . . . . . . . . . . . . 17  |-  ( k  =  z  ->  (
y  =  k  <->  y  =  z ) )
144143ifbid 3894 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  if ( y  =  k ,  .1.  ,  .0.  )  =  if (
y  =  z ,  .1.  ,  .0.  )
)
145144mpteq2dv 4483 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )
146142, 145oveq12d 6326 . . . . . . . . . . . . . 14  |-  ( k  =  z  ->  (
( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) )  =  ( ( X `  z
)  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  )
) ) )
1473, 95, 100, 101, 123, 125, 126, 141, 146gsumunsn 17670 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
148 eqid 2471 . . . . . . . . . . . . . . 15  |-  ( +g  `  R )  =  ( +g  `  R )
149129ffvelrnda 6037 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( X `  y )  e.  (
Base `  R )
)
1502, 17ring0cl 17880 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  Ring  ->  .0.  e.  ( Base `  R )
)
15183, 150syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
152151ad2antrr 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  .0.  e.  ( Base `  R )
)
153149, 152ifcld 3915 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  if (
y  e.  x ,  ( X `  y
) ,  .0.  )  e.  ( Base `  R
) )
154 eqid 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)
155153, 154fmptd 6061 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) : D --> ( Base `  R ) )
156 fvex 5889 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  R )  e.  _V
157156, 15elmap 7518 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  ( ( Base `  R
)  ^m  D )  <->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) : D --> ( Base `  R )
)
158155, 157sylibr 217 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  ( ( Base `  R )  ^m  D
) )
15933, 2, 4, 34, 137psrbas 18679 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( Base `  (
I mPwSer  R ) )  =  ( ( Base `  R
)  ^m  D )
)
160158, 159eleqtrrd 2552 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  ( Base `  (
I mPwSer  R ) ) )
16115mptex 6152 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  e.  _V
162 funmpt 5625 . . . . . . . . . . . . . . . . . . 19  |-  Fun  (
y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )
163161, 162, 193pm3.2i 1208 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  _V  /\ 
Fun  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  /\  .0.  e.  _V )
164163a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  e.  _V  /\  Fun  ( y  e.  D  |->  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )  /\  .0.  e.  _V ) )
165 eldifn 3545 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( D  \  x )  ->  -.  y  e.  x )
166165adantl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  ( D  \  x ) )  ->  -.  y  e.  x )
167166iffalsed 3883 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  ( D  \  x ) )  ->  if (
y  e.  x ,  ( X `  y
) ,  .0.  )  =  .0.  )
16815a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  D  e.  _V )
169167, 168suppss2 6968 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) supp  .0.  )  C_  x )
170 suppssfifsupp 7916 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  _V  /\  Fun  ( y  e.  D  |->  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )  /\  .0.  e.  _V )  /\  ( x  e.  Fin  /\  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) supp 
.0.  )  C_  x
) )  ->  (
y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) finSupp  .0.  )
171164, 101, 169, 170syl12anc 1290 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) finSupp  .0.  )
1721, 33, 34, 17, 3mplelbas 18731 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  B  <->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )  e.  ( Base `  (
I mPwSer  R ) )  /\  ( y  e.  D  |->  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) ) finSupp  .0.  ) )
173160, 171, 172sylanbrc 677 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  B )
1741, 3, 148, 95, 173, 141mpladd 18743 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  oF ( +g  `  R ) ( ( X `  z )  .x.  (
y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
175 ovex 6336 . . . . . . . . . . . . . . . 16  |-  ( ( X `  z ) ( .r `  R
) if ( y  =  z ,  .1.  ,  .0.  ) )  e. 
_V
176175a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( ( X `  z )
( .r `  R
) if ( y  =  z ,  .1.  ,  .0.  ) )  e. 
_V )
177 eqidd 2472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )
178 eqid 2471 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  R )  =  ( .r `  R
)
1791, 118, 2, 3, 178, 4, 133, 139mplvsca 18748 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( ( D  X.  { ( X `  z ) } )  oF ( .r
`  R ) ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )
180133adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( X `  z )  e.  (
Base `  R )
)
1812, 114ringidcl 17879 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
182181, 150ifcld 3915 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  Ring  ->  if ( y  =  z ,  .1.  ,  .0.  )  e.  ( Base `  R
) )
18383, 182syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  if ( y  =  z ,  .1.  ,  .0.  )  e.  ( Base `  R ) )
184183ad2antrr 740 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  if (
y  =  z ,  .1.  ,  .0.  )  e.  ( Base `  R
) )
185 fconstmpt 4883 . . . . . . . . . . . . . . . . . 18  |-  ( D  X.  { ( X `
 z ) } )  =  ( y  e.  D  |->  ( X `
 z ) )
186185a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( D  X.  { ( X `  z ) } )  =  ( y  e.  D  |->  ( X `  z ) ) )
187 eqidd 2472 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )
188168, 180, 184, 186, 187offval2 6567 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( D  X.  { ( X `
 z ) } )  oF ( .r `  R ) ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) )
189179, 188eqtrd 2505 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) )
190168, 153, 176, 177, 189offval2 6567 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  oF ( +g  `  R ) ( ( X `  z )  .x.  (
y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( y  e.  D  |->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
191138, 84syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  R  e.  Grp )
1922, 148, 17grplid 16774 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Grp  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (  .0.  ( +g  `  R
) ( X `  z ) )  =  ( X `  z
) )
193191, 133, 192syl2anc 673 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  (  .0.  ( +g  `  R ) ( X `  z ) )  =  ( X `
 z ) )
194193ad2antrr 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  (  .0.  ( +g  `  R ) ( X `  z ) )  =  ( X `
 z ) )
195 simpr 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  y  e.  {
z } )
196 elsn 3973 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  { z }  <-> 
y  =  z )
197195, 196sylib 201 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  y  =  z )
198197fveq2d 5883 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( X `  y )  =  ( X `  z ) )
199194, 198eqtr4d 2508 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  (  .0.  ( +g  `  R ) ( X `  z ) )  =  ( X `
 y ) )
200126ad2antrr 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  -.  z  e.  x )
201197, 200eqneltrd 2568 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  -.  y  e.  x )
202201iffalsed 3883 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  if ( y  e.  x ,  ( X `  y ) ,  .0.  )  =  .0.  )
203197iftrued 3880 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  if ( y  =  z ,  .1.  ,  .0.  )  =  .1.  )
204203oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) )  =  ( ( X `  z
) ( .r `  R )  .1.  )
)
2052, 178, 114ringridm 17883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R )  .1.  )  =  ( X `  z ) )
206138, 133, 205syl2anc 673 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z ) ( .r `  R )  .1.  )  =  ( X `  z ) )
207206ad2antrr 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( ( X `
 z ) ( .r `  R )  .1.  )  =  ( X `  z ) )
208204, 207eqtrd 2505 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) )  =  ( X `  z ) )
209202, 208oveq12d 6326 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  (  .0.  ( +g  `  R ) ( X `
 z ) ) )
210 elun2 3593 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  { z }  ->  y  e.  ( x  u.  { z } ) )
211210adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  y  e.  ( x  u.  { z } ) )
212211iftrued 3880 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y ) )
213199, 209, 2123eqtr4d 2515 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
21485ad2antrr 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  R  e.  Grp )
2152, 148, 17grprid 16775 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Grp  /\  if ( y  e.  x ,  ( X `  y ) ,  .0.  )  e.  ( Base `  R ) )  -> 
( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R )  .0.  )  =  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )
216214, 153, 215syl2anc 673 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
)  .0.  )  =  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )
217216adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
)  .0.  )  =  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )
218 simpr 468 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  -.  y  e.  { z } )
219218, 196sylnib 311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  -.  y  =  z )
220219iffalsed 3883 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  if ( y  =  z ,  .1.  ,  .0.  )  =  .0.  )
221220oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
( X `  z
) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  )
)  =  ( ( X `  z ) ( .r `  R
)  .0.  ) )
2222, 178, 17ringrz 17896 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R )  .0.  )  =  .0.  )
223138, 133, 222syl2anc 673 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z ) ( .r `  R )  .0.  )  =  .0.  )
224223ad2antrr 740 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
( X `  z
) ( .r `  R )  .0.  )  =  .0.  )
225221, 224eqtrd 2505 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
( X `  z
) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  )
)  =  .0.  )
226225oveq2d 6324 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
) ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R )  .0.  ) )
227 biorf 412 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  y  e.  { z }  ->  ( y  e.  x  <->  ( y  e. 
{ z }  \/  y  e.  x )
) )
228 elun 3565 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( x  u. 
{ z } )  <-> 
( y  e.  x  \/  y  e.  { z } ) )
229 orcom 394 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  x  \/  y  e.  { z } )  <->  ( y  e.  { z }  \/  y  e.  x )
)
230228, 229bitri 257 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( x  u. 
{ z } )  <-> 
( y  e.  {
z }  \/  y  e.  x ) )
231227, 230syl6rbbr 272 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  y  e.  { z }  ->  ( y  e.  ( x  u.  {
z } )  <->  y  e.  x ) )
232231adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
y  e.  ( x  u.  { z } )  <->  y  e.  x
) )
233232ifbid 3894 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  )  =  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )
234217, 226, 2333eqtr4d 2515 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
) ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
235213, 234pm2.61dan 808 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
) ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
236235mpteq2dva 4482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  ) ) )
237174, 190, 2363eqtrrd 2510 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) ) ( +g  `  P ) ( ( X `  z )  .x.  (
y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
238147, 237eqeq12d 2486 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( P 
gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) )  <-> 
( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) ( +g  `  P ) ( ( X `  z ) 
.x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ( +g  `  P ) ( ( X `  z ) 
.x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) ) )
23994, 238syl5ibr 229 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( P 
gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) )
240239expr 626 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( x  u. 
{ z } ) 
C_  D  ->  (
( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) ) )
241240a2d 28 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( ( x  u.  { z } )  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) )  ->  (
( x  u.  {
z } )  C_  D  ->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) ) )
24293, 241syl5 32 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )  -> 
( ( x  u. 
{ z } ) 
C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) )
243242expcom 442 . . . . . . 7  |-  ( ( x  e.  Fin  /\  -.  z  e.  x
)  ->  ( ph  ->  ( ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )  -> 
( ( x  u. 
{ z } ) 
C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) ) )
244243a2d 28 . . . . . 6  |-  ( ( x  e.  Fin  /\  -.  z  e.  x
)  ->  ( ( ph  ->  ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) )  ->  ( ph  ->  ( ( x  u.  {
z } )  C_  D  ->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) ) ) )
24554, 63, 72, 81, 89, 244findcard2s 7830 . . . . 5  |-  ( ( X supp  .0.  )  e.  Fin  ->  ( ph  ->  ( ( X supp  .0.  )  C_  D  ->  ( P  gsumg  ( k  e.  ( X supp 
.0.  )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( X supp  .0.  ) , 
( X `  y
) ,  .0.  )
) ) ) )
24638, 245mpcom 36 . . . 4  |-  ( ph  ->  ( ( X supp  .0.  )  C_  D  ->  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  ) ) ) )
24732, 246mpd 15 . . 3  |-  ( ph  ->  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( X supp  .0.  ) ,  ( X `  y ) ,  .0.  ) ) )
24828, 247eqtr4d 2508 . 2  |-  ( ph  ->  X  =  ( P 
gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) ) )
24932resmptd 5162 . . . 4  |-  ( ph  ->  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  |`  ( X supp  .0.  )
)  =  ( k  e.  ( X supp  .0.  )  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )
250249oveq2d 6324 . . 3  |-  ( ph  ->  ( P  gsumg  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  |`  ( X supp  .0.  )
) )  =  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) ) )
251 eqid 2471 . . . . 5  |-  ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )
252121, 251fmptd 6061 . . . 4  |-  ( ph  ->  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) : D --> B )
2536, 13, 16, 20suppssr 6965 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( D  \  ( X supp  .0.  ) ) )  ->  ( X `  k )  =  .0.  )
254253oveq1d 6323 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  ( X supp  .0.  ) ) )  ->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  (  .0.  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )
255 eldifi 3544 . . . . . . 7  |-  ( k  e.  ( D  \ 
( X supp  .0.  )
)  ->  k  e.  D )
256111fveq2d 5883 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  D )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
25717, 256syl5eq 2517 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  D )  ->  .0.  =  ( 0g `  (Scalar `  P ) ) )
258257oveq1d 6323 . . . . . . . 8  |-  ( (
ph  /\  k  e.  D )  ->  (  .0.  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( ( 0g
`  (Scalar `  P )
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) )
259 eqid 2471 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  P )
)  =  ( 0g
`  (Scalar `  P )
)
2603, 117, 118, 259, 44lmod0vs 18202 . . . . . . . . 9  |-  ( ( P  e.  LMod  /\  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  e.  B
)  ->  ( ( 0g `  (Scalar `  P
) )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
261108, 116, 260syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  k  e.  D )  ->  (
( 0g `  (Scalar `  P ) )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
262258, 261eqtrd 2505 . . . . . . 7  |-  ( (
ph  /\  k  e.  D )  ->  (  .0.  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P ) )
263255, 262sylan2 482 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  ( X supp  .0.  ) ) )  ->  (  .0.  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
264254, 263eqtrd 2505 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  ( X supp  .0.  ) ) )  ->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
265264, 16suppss2 6968 . . . 4  |-  ( ph  ->  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) supp  ( 0g `  P
) )  C_  ( X supp  .0.  ) )
26615mptex 6152 . . . . . . 7  |-  ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  e.  _V
267 funmpt 5625 . . . . . . 7  |-  Fun  (
k  e.  D  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) )
268 fvex 5889 . . . . . . 7  |-  ( 0g
`  P )  e. 
_V
269266, 267, 2683pm3.2i 1208 . . . . . 6  |-  ( ( k  e.  D  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) )  e. 
_V  /\  Fun  ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  /\  ( 0g
`  P )  e. 
_V )
270269a1i 11 . . . . 5  |-  ( ph  ->  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  e.  _V  /\  Fun  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  /\  ( 0g `  P )  e.  _V ) )
271 suppssfifsupp 7916 . . . . 5  |-  ( ( ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  e.  _V  /\  Fun  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  /\  ( 0g `  P )  e.  _V )  /\  ( ( X supp 
.0.  )  e.  Fin  /\  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) supp  ( 0g `  P
) )  C_  ( X supp  .0.  ) ) )  ->  ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) finSupp 
( 0g `  P
) )
272270, 38, 265, 271syl12anc 1290 . . . 4  |-  ( ph  ->  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) finSupp 
( 0g `  P
) )
2733, 44, 99, 16, 252, 265, 272gsumres 17625 . . 3  |-  ( ph  ->  ( P  gsumg  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  |`  ( X supp  .0.  )
) )  =  ( P  gsumg  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
274250, 273eqtr3d 2507 . 2  |-  ( ph  ->  ( P  gsumg  ( k  e.  ( X supp  .0.  )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( P  gsumg  ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
275248, 274eqtrd 2505 1  |-  ( ph  ->  X  =  ( P 
gsumg  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {crab 2760   _Vcvv 3031    \ cdif 3387    u. cun 3388    C_ wss 3390   (/)c0 3722   ifcif 3872   {csn 3959   class class class wbr 4395    |-> cmpt 4454    X. cxp 4837   `'ccnv 4838   dom cdm 4839    |` cres 4841   "cima 4842   Fun wfun 5583   -->wf 5585   ` cfv 5589  (class class class)co 6308    oFcof 6548   supp csupp 6933    ^m cmap 7490   Fincfn 7587   finSupp cfsupp 7901   NNcn 10631   NN0cn0 10893   Basecbs 15199   +g cplusg 15268   .rcmulr 15269  Scalarcsca 15271   .scvsca 15272   0gc0g 15416    gsumg cgsu 15417   Grpcgrp 16747  CMndccmn 17508   1rcur 17813   Ringcrg 17858   LModclmod 18169   mPwSer cmps 18652   mPoly cmpl 18654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-ofr 6551  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-seq 12252  df-hash 12554  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-tset 15287  df-0g 15418  df-gsum 15419  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-submnd 16661  df-grp 16751  df-minusg 16752  df-sbg 16753  df-mulg 16754  df-subg 16892  df-ghm 16959  df-cntz 17049  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-subrg 18084  df-lmod 18171  df-lss 18234  df-psr 18657  df-mpl 18659
This theorem is referenced by:  mplbas2  18771  mplcoe4  18803  ply1coe  18966  ply1coeOLD  18967
  Copyright terms: Public domain W3C validator