MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbas2OLD Structured version   Unicode version

Theorem mplbas2OLD 17540
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.) Obsolete version of mplbas2 17539 as of 8-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mplbas2.p  |-  P  =  ( I mPoly  R )
mplbas2.s  |-  S  =  ( I mPwSer  R )
mplbas2.v  |-  V  =  ( I mVar  R )
mplbas2.a  |-  A  =  (AlgSpan `  S )
mplbas2.i  |-  ( ph  ->  I  e.  W )
mplbas2.r  |-  ( ph  ->  R  e.  CRing )
Assertion
Ref Expression
mplbas2OLD  |-  ( ph  ->  ( A `  ran  V )  =  ( Base `  P ) )

Proof of Theorem mplbas2OLD
Dummy variables  u  k  v  x  z 
y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplbas2.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 mplbas2.i . . . . 5  |-  ( ph  ->  I  e.  W )
3 mplbas2.r . . . . 5  |-  ( ph  ->  R  e.  CRing )
41, 2, 3psrassa 17476 . . . 4  |-  ( ph  ->  S  e. AssAlg )
5 mplbas2.p . . . . . 6  |-  P  =  ( I mPoly  R )
6 eqid 2441 . . . . . 6  |-  ( Base `  P )  =  (
Base `  P )
7 eqid 2441 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
85, 1, 6, 7mplbasss 17498 . . . . 5  |-  ( Base `  P )  C_  ( Base `  S )
98a1i 11 . . . 4  |-  ( ph  ->  ( Base `  P
)  C_  ( Base `  S ) )
10 mplbas2.v . . . . . . . 8  |-  V  =  ( I mVar  R )
11 crngrng 16645 . . . . . . . . 9  |-  ( R  e.  CRing  ->  R  e.  Ring )
123, 11syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
131, 10, 7, 2, 12mvrf 17487 . . . . . . 7  |-  ( ph  ->  V : I --> ( Base `  S ) )
14 ffn 5556 . . . . . . 7  |-  ( V : I --> ( Base `  S )  ->  V  Fn  I )
1513, 14syl 16 . . . . . 6  |-  ( ph  ->  V  Fn  I )
162adantr 462 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
1712adantr 462 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Ring )
18 simpr 458 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
195, 10, 6, 16, 17, 18mvrcl 17518 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( V `  x )  e.  ( Base `  P
) )
2019ralrimiva 2797 . . . . . 6  |-  ( ph  ->  A. x  e.  I 
( V `  x
)  e.  ( Base `  P ) )
21 ffnfv 5866 . . . . . 6  |-  ( V : I --> ( Base `  P )  <->  ( V  Fn  I  /\  A. x  e.  I  ( V `  x )  e.  (
Base `  P )
) )
2215, 20, 21sylanbrc 659 . . . . 5  |-  ( ph  ->  V : I --> ( Base `  P ) )
23 frn 5562 . . . . 5  |-  ( V : I --> ( Base `  P )  ->  ran  V 
C_  ( Base `  P
) )
2422, 23syl 16 . . . 4  |-  ( ph  ->  ran  V  C_  ( Base `  P ) )
25 mplbas2.a . . . . 5  |-  A  =  (AlgSpan `  S )
2625, 7aspss 17381 . . . 4  |-  ( ( S  e. AssAlg  /\  ( Base `  P )  C_  ( Base `  S )  /\  ran  V  C_  ( Base `  P ) )  ->  ( A `  ran  V )  C_  ( A `  ( Base `  P ) ) )
274, 9, 24, 26syl3anc 1213 . . 3  |-  ( ph  ->  ( A `  ran  V )  C_  ( A `  ( Base `  P
) ) )
281, 5, 6, 2, 12mplsubrg 17509 . . . 4  |-  ( ph  ->  ( Base `  P
)  e.  (SubRing `  S
) )
291, 5, 6, 2, 12mpllss 17506 . . . 4  |-  ( ph  ->  ( Base `  P
)  e.  ( LSubSp `  S ) )
30 eqid 2441 . . . . 5  |-  ( LSubSp `  S )  =  (
LSubSp `  S )
3125, 7, 30aspid 17379 . . . 4  |-  ( ( S  e. AssAlg  /\  ( Base `  P )  e.  (SubRing `  S )  /\  ( Base `  P
)  e.  ( LSubSp `  S ) )  -> 
( A `  ( Base `  P ) )  =  ( Base `  P
) )
324, 28, 29, 31syl3anc 1213 . . 3  |-  ( ph  ->  ( A `  ( Base `  P ) )  =  ( Base `  P
) )
3327, 32sseqtrd 3389 . 2  |-  ( ph  ->  ( A `  ran  V )  C_  ( Base `  P ) )
34 eqid 2441 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
35 eqid 2441 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
36 eqid 2441 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
372adantr 462 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  I  e.  W )
38 eqid 2441 . . . . . 6  |-  ( .s
`  P )  =  ( .s `  P
)
3912adantr 462 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  R  e.  Ring )
40 simpr 458 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  e.  ( Base `  P )
)
415, 34, 35, 36, 37, 6, 38, 39, 40mplcoe1 17534 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  =  ( P  gsumg  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) ) )
42 eqid 2441 . . . . . 6  |-  ( 0g
`  P )  =  ( 0g `  P
)
435mplrng 17521 . . . . . . . . 9  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  Ring )
442, 12, 43syl2anc 656 . . . . . . . 8  |-  ( ph  ->  P  e.  Ring )
45 rngabl 16664 . . . . . . . 8  |-  ( P  e.  Ring  ->  P  e. 
Abel )
4644, 45syl 16 . . . . . . 7  |-  ( ph  ->  P  e.  Abel )
4746adantr 462 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  P  e.  Abel )
48 ovex 6115 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
4948rabex 4440 . . . . . . 7  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
5049a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  e.  _V )
5124, 8syl6ss 3365 . . . . . . . . . 10  |-  ( ph  ->  ran  V  C_  ( Base `  S ) )
5225, 7aspsubrg 17380 . . . . . . . . . 10  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ( A `  ran  V )  e.  (SubRing `  S
) )
534, 51, 52syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  ( A `  ran  V )  e.  (SubRing `  S
) )
545, 1, 6mplval2 17497 . . . . . . . . . . 11  |-  P  =  ( Ss  ( Base `  P
) )
5554subsubrg 16871 . . . . . . . . . 10  |-  ( (
Base `  P )  e.  (SubRing `  S )  ->  ( ( A `  ran  V )  e.  (SubRing `  P )  <->  ( ( A `  ran  V )  e.  (SubRing `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
5628, 55syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( A `  ran  V )  e.  (SubRing `  P )  <->  ( ( A `  ran  V )  e.  (SubRing `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
5753, 33, 56mpbir2and 908 . . . . . . . 8  |-  ( ph  ->  ( A `  ran  V )  e.  (SubRing `  P
) )
58 subrgsubg 16851 . . . . . . . 8  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( A `  ran  V )  e.  (SubGrp `  P )
)
5957, 58syl 16 . . . . . . 7  |-  ( ph  ->  ( A `  ran  V )  e.  (SubGrp `  P ) )
6059adantr 462 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( A `  ran  V )  e.  (SubGrp `  P )
)
615mpllmod 17520 . . . . . . . . . 10  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  LMod )
622, 12, 61syl2anc 656 . . . . . . . . 9  |-  ( ph  ->  P  e.  LMod )
6362ad2antrr 720 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  P  e.  LMod )
6425, 7, 30asplss 17378 . . . . . . . . . . 11  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ( A `  ran  V )  e.  ( LSubSp `  S
) )
654, 51, 64syl2anc 656 . . . . . . . . . 10  |-  ( ph  ->  ( A `  ran  V )  e.  ( LSubSp `  S ) )
661, 2, 12psrlmod 17462 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  LMod )
67 eqid 2441 . . . . . . . . . . . 12  |-  ( LSubSp `  P )  =  (
LSubSp `  P )
6854, 30, 67lsslss 17020 . . . . . . . . . . 11  |-  ( ( S  e.  LMod  /\  ( Base `  P )  e.  ( LSubSp `  S )
)  ->  ( ( A `  ran  V )  e.  ( LSubSp `  P
)  <->  ( ( A `
 ran  V )  e.  ( LSubSp `  S )  /\  ( A `  ran  V )  C_  ( Base `  P ) ) ) )
6966, 29, 68syl2anc 656 . . . . . . . . . 10  |-  ( ph  ->  ( ( A `  ran  V )  e.  (
LSubSp `  P )  <->  ( ( A `  ran  V )  e.  ( LSubSp `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
7065, 33, 69mpbir2and 908 . . . . . . . . 9  |-  ( ph  ->  ( A `  ran  V )  e.  ( LSubSp `  P ) )
7170ad2antrr 720 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  ( LSubSp `  P
) )
72 eqid 2441 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
735, 72, 6, 34, 40mplelf 17499 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
7473ffvelrnda 5840 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
x `  k )  e.  ( Base `  R
) )
755, 37, 39mplsca 17514 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  R  =  (Scalar `  P ) )
7675adantr 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  =  (Scalar `  P )
)
7776fveq2d 5692 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( Base `  R )  =  ( Base `  (Scalar `  P ) ) )
7874, 77eleqtrd 2517 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
x `  k )  e.  ( Base `  (Scalar `  P ) ) )
7937adantr 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  I  e.  W )
80 eqid 2441 . . . . . . . . . 10  |-  (mulGrp `  P )  =  (mulGrp `  P )
81 eqid 2441 . . . . . . . . . 10  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
823adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  R  e.  CRing
)
8382adantr 462 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  e.  CRing )
84 simpr 458 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )
855, 34, 35, 36, 79, 80, 81, 10, 83, 84mplcoe2 17537 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  =  ( (mulGrp `  P )  gsumg  ( z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) ) )
86 eqid 2441 . . . . . . . . . . 11  |-  ( 1r
`  P )  =  ( 1r `  P
)
8780, 86rngidval 16595 . . . . . . . . . 10  |-  ( 1r
`  P )  =  ( 0g `  (mulGrp `  P ) )
885mplcrng 17522 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  R  e.  CRing )  ->  P  e.  CRing )
892, 3, 88syl2anc 656 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CRing )
9080crngmgp 16643 . . . . . . . . . . . 12  |-  ( P  e.  CRing  ->  (mulGrp `  P
)  e. CMnd )
9189, 90syl 16 . . . . . . . . . . 11  |-  ( ph  ->  (mulGrp `  P )  e. CMnd )
9291ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (mulGrp `  P )  e. CMnd )
9357ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  (SubRing `  P
) )
9480subrgsubm 16858 . . . . . . . . . . 11  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( A `  ran  V )  e.  (SubMnd `  (mulGrp `  P
) ) )
9593, 94syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  (SubMnd `  (mulGrp `  P ) ) )
96 simplll 752 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ph )
9734psrbag 17421 . . . . . . . . . . . . . . . 16  |-  ( I  e.  W  ->  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  <->  ( k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
) )
9837, 97syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  <->  ( k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
) )
9998biimpa 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
)
10099simpld 456 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  k : I --> NN0 )
101100ffvelrnda 5840 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( k `  z )  e.  NN0 )
10225, 7aspssid 17382 . . . . . . . . . . . . . . 15  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ran  V 
C_  ( A `  ran  V ) )
1034, 51, 102syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  V  C_  ( A `  ran  V ) )
104103ad3antrrr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ran  V  C_  ( A `  ran  V
) )
10515ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  V  Fn  I )
106 fnfvelrn 5837 . . . . . . . . . . . . . 14  |-  ( ( V  Fn  I  /\  z  e.  I )  ->  ( V `  z
)  e.  ran  V
)
107105, 106sylan 468 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( V `  z )  e.  ran  V )
108104, 107sseldd 3354 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( V `  z )  e.  ( A `  ran  V
) )
10980, 6mgpbas 16587 . . . . . . . . . . . . 13  |-  ( Base `  P )  =  (
Base `  (mulGrp `  P
) )
110 eqid 2441 . . . . . . . . . . . . . 14  |-  ( .r
`  P )  =  ( .r `  P
)
11180, 110mgpplusg 16585 . . . . . . . . . . . . 13  |-  ( .r
`  P )  =  ( +g  `  (mulGrp `  P ) )
112110subrgmcl 16857 . . . . . . . . . . . . . 14  |-  ( ( ( A `  ran  V )  e.  (SubRing `  P
)  /\  u  e.  ( A `  ran  V
)  /\  v  e.  ( A `  ran  V
) )  ->  (
u ( .r `  P ) v )  e.  ( A `  ran  V ) )
11357, 112syl3an1 1246 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A `  ran  V
)  /\  v  e.  ( A `  ran  V
) )  ->  (
u ( .r `  P ) v )  e.  ( A `  ran  V ) )
11486subrg1cl 16853 . . . . . . . . . . . . . 14  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( 1r `  P )  e.  ( A `  ran  V
) )
11557, 114syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1r `  P
)  e.  ( A `
 ran  V )
)
116109, 81, 111, 91, 33, 113, 87, 115mulgnn0subcl 15633 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k `  z )  e.  NN0  /\  ( V `  z
)  e.  ( A `
 ran  V )
)  ->  ( (
k `  z )
(.g `  (mulGrp `  P
) ) ( V `
 z ) )  e.  ( A `  ran  V ) )
11796, 101, 108, 116syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( (
k `  z )
(.g `  (mulGrp `  P
) ) ( V `
 z ) )  e.  ( A `  ran  V ) )
118 eqid 2441 . . . . . . . . . . 11  |-  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )  =  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )
119117, 118fmptd 5864 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) : I --> ( A `
 ran  V )
)
12099simprd 460 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( `' k " NN )  e.  Fin )
121 nn0suppOLD 10630 . . . . . . . . . . . . . . . 16  |-  ( k : I --> NN0  ->  ( `' k " ( _V  \  { 0 } ) )  =  ( `' k " NN ) )
122 eqimss 3405 . . . . . . . . . . . . . . . 16  |-  ( ( `' k " ( _V  \  { 0 } ) )  =  ( `' k " NN )  ->  ( `' k
" ( _V  \  { 0 } ) )  C_  ( `' k " NN ) )
123100, 121, 1223syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( `' k " ( _V  \  { 0 } ) )  C_  ( `' k " NN ) )
124100, 123suppssrOLD 5834 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
k `  z )  =  0 )
125124oveq1d 6105 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 0 (.g `  (mulGrp `  P )
) ( V `  z ) ) )
12679adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  I  e.  W )
12739adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  e.  Ring )
128127adantr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  R  e.  Ring )
129 eldifi 3475 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( I  \ 
( `' k " NN ) )  ->  z  e.  I )
130129adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  z  e.  I )
1315, 10, 6, 126, 128, 130mvrcl 17518 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  ( V `  z )  e.  ( Base `  P
) )
132109, 87, 81mulg0 15625 . . . . . . . . . . . . . 14  |-  ( ( V `  z )  e.  ( Base `  P
)  ->  ( 0 (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
133131, 132syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
0 (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
134125, 133eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
135134suppss2OLD 6314 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( `' ( z  e.  I  |->  ( ( k `
 z ) (.g `  (mulGrp `  P )
) ( V `  z ) ) )
" ( _V  \  { ( 1r `  P ) } ) )  C_  ( `' k " NN ) )
136 ssfi 7529 . . . . . . . . . . 11  |-  ( ( ( `' k " NN )  e.  Fin  /\  ( `' ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) " ( _V 
\  { ( 1r
`  P ) } ) )  C_  ( `' k " NN ) )  ->  ( `' ( z  e.  I  |->  ( ( k `
 z ) (.g `  (mulGrp `  P )
) ( V `  z ) ) )
" ( _V  \  { ( 1r `  P ) } ) )  e.  Fin )
137120, 135, 136syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( `' ( z  e.  I  |->  ( ( k `
 z ) (.g `  (mulGrp `  P )
) ( V `  z ) ) )
" ( _V  \  { ( 1r `  P ) } ) )  e.  Fin )
13887, 92, 79, 95, 119, 137gsumsubmclOLD 16398 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
(mulGrp `  P )  gsumg  ( z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) )  e.  ( A `  ran  V
) )
13985, 138eqeltrd 2515 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( A `  ran  V
) )
140 eqid 2441 . . . . . . . . 9  |-  (Scalar `  P )  =  (Scalar `  P )
141 eqid 2441 . . . . . . . . 9  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
142140, 38, 141, 67lssvscl 17014 . . . . . . . 8  |-  ( ( ( P  e.  LMod  /\  ( A `  ran  V )  e.  ( LSubSp `  P ) )  /\  ( ( x `  k )  e.  (
Base `  (Scalar `  P
) )  /\  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( A `  ran  V
) ) )  -> 
( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  e.  ( A `  ran  V ) )
14363, 71, 78, 139, 142syl22anc 1214 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  e.  ( A `  ran  V ) )
144 eqid 2441 . . . . . . 7  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  =  ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )
145143, 144fmptd 5864 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( A `  ran  V ) )
1465, 1, 7, 35, 6mplelbasOLD 17496 . . . . . . . . 9  |-  ( x  e.  ( Base `  P
)  <->  ( x  e.  ( Base `  S
)  /\  ( `' x " ( _V  \  { ( 0g `  R ) } ) )  e.  Fin )
)
147146simprbi 461 . . . . . . . 8  |-  ( x  e.  ( Base `  P
)  ->  ( `' x " ( _V  \  { ( 0g `  R ) } ) )  e.  Fin )
148147adantl 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( `' x " ( _V  \  { ( 0g `  R ) } ) )  e.  Fin )
149 ssid 3372 . . . . . . . . . . . . 13  |-  ( `' x " ( _V 
\  { ( 0g
`  R ) } ) )  C_  ( `' x " ( _V 
\  { ( 0g
`  R ) } ) )
150149a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( `' x " ( _V  \  { ( 0g `  R ) } ) )  C_  ( `' x " ( _V  \  { ( 0g `  R ) } ) ) )
15173, 150suppssrOLD 5834 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( `' x "
( _V  \  {
( 0g `  R
) } ) ) ) )  ->  (
x `  k )  =  ( 0g `  R ) )
15275fveq2d 5692 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
153152adantr 462 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( `' x "
( _V  \  {
( 0g `  R
) } ) ) ) )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
154151, 153eqtrd 2473 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( `' x "
( _V  \  {
( 0g `  R
) } ) ) ) )  ->  (
x `  k )  =  ( 0g `  (Scalar `  P ) ) )
155154oveq1d 6105 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( `' x "
( _V  \  {
( 0g `  R
) } ) ) ) )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( ( 0g `  (Scalar `  P ) ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )
156 eldifi 3475 . . . . . . . . . 10  |-  ( k  e.  ( { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  \ 
( `' x "
( _V  \  {
( 0g `  R
) } ) ) )  ->  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
1575, 6, 35, 36, 34, 79, 127, 84mplmon 17532 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  (
Base `  P )
)
158 eqid 2441 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  P )
)  =  ( 0g
`  (Scalar `  P )
)
1596, 140, 38, 158, 42lmod0vs 16961 . . . . . . . . . . 11  |-  ( ( P  e.  LMod  /\  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  (
Base `  P )
)  ->  ( ( 0g `  (Scalar `  P
) ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( 0g `  P
) )
16063, 157, 159syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( 0g `  (Scalar `  P ) ) ( .s `  P ) ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  k ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )  =  ( 0g `  P ) )
161156, 160sylan2 471 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( `' x "
( _V  \  {
( 0g `  R
) } ) ) ) )  ->  (
( 0g `  (Scalar `  P ) ) ( .s `  P ) ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  k ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )  =  ( 0g `  P ) )
162155, 161eqtrd 2473 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( `' x "
( _V  \  {
( 0g `  R
) } ) ) ) )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( 0g `  P
) )
163162suppss2OLD 6314 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( `' ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
" ( _V  \  { ( 0g `  P ) } ) )  C_  ( `' x " ( _V  \  { ( 0g `  R ) } ) ) )
164 ssfi 7529 . . . . . . 7  |-  ( ( ( `' x "
( _V  \  {
( 0g `  R
) } ) )  e.  Fin  /\  ( `' ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) "
( _V  \  {
( 0g `  P
) } ) ) 
C_  ( `' x " ( _V  \  {
( 0g `  R
) } ) ) )  ->  ( `' ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
" ( _V  \  { ( 0g `  P ) } ) )  e.  Fin )
165148, 163, 164syl2anc 656 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( `' ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
" ( _V  \  { ( 0g `  P ) } ) )  e.  Fin )
16642, 47, 50, 60, 145, 165gsumsubgclOLD 16400 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( P  gsumg  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) )  e.  ( A `
 ran  V )
)
16741, 166eqeltrd 2515 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  e.  ( A `  ran  V
) )
168167ex 434 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  P )  ->  x  e.  ( A `
 ran  V )
) )
169168ssrdv 3359 . 2  |-  ( ph  ->  ( Base `  P
)  C_  ( A `  ran  V ) )
17033, 169eqssd 3370 1  |-  ( ph  ->  ( A `  ran  V )  =  ( Base `  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717   _Vcvv 2970    \ cdif 3322    C_ wss 3325   ifcif 3788   {csn 3874    e. cmpt 4347   `'ccnv 4835   ran crn 4837   "cima 4839    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   Fincfn 7306   0cc0 9278   NNcn 10318   NN0cn0 10575   Basecbs 14170   .rcmulr 14235  Scalarcsca 14237   .scvsca 14238   0gc0g 14374    gsumg cgsu 14375  .gcmg 15410  SubMndcsubmnd 15459  SubGrpcsubg 15668  CMndccmn 16270   Abelcabel 16271  mulGrpcmgp 16581   1rcur 16593   Ringcrg 16635   CRingccrg 16636  SubRingcsubrg 16841   LModclmod 16928   LSubSpclss 16991  AssAlgcasa 17359  AlgSpancasp 17360   mPwSer cmps 17396   mVar cmvr 17397   mPoly cmpl 17398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-tset 14253  df-0g 14376  df-gsum 14377  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-ghm 15738  df-cntz 15828  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-subrg 16843  df-lmod 16930  df-lss 16992  df-assa 17362  df-asp 17363  df-psr 17407  df-mvr 17408  df-mpl 17409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator