MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbas2 Structured version   Unicode version

Theorem mplbas2 17921
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mplbas2.p  |-  P  =  ( I mPoly  R )
mplbas2.s  |-  S  =  ( I mPwSer  R )
mplbas2.v  |-  V  =  ( I mVar  R )
mplbas2.a  |-  A  =  (AlgSpan `  S )
mplbas2.i  |-  ( ph  ->  I  e.  W )
mplbas2.r  |-  ( ph  ->  R  e.  CRing )
Assertion
Ref Expression
mplbas2  |-  ( ph  ->  ( A `  ran  V )  =  ( Base `  P ) )

Proof of Theorem mplbas2
Dummy variables  u  k  v  x  z 
y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplbas2.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 mplbas2.i . . . . 5  |-  ( ph  ->  I  e.  W )
3 mplbas2.r . . . . 5  |-  ( ph  ->  R  e.  CRing )
41, 2, 3psrassa 17856 . . . 4  |-  ( ph  ->  S  e. AssAlg )
5 mplbas2.p . . . . . 6  |-  P  =  ( I mPoly  R )
6 eqid 2467 . . . . . 6  |-  ( Base `  P )  =  (
Base `  P )
7 eqid 2467 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
85, 1, 6, 7mplbasss 17878 . . . . 5  |-  ( Base `  P )  C_  ( Base `  S )
98a1i 11 . . . 4  |-  ( ph  ->  ( Base `  P
)  C_  ( Base `  S ) )
10 mplbas2.v . . . . . . . 8  |-  V  =  ( I mVar  R )
11 crngrng 17005 . . . . . . . . 9  |-  ( R  e.  CRing  ->  R  e.  Ring )
123, 11syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
131, 10, 7, 2, 12mvrf 17867 . . . . . . 7  |-  ( ph  ->  V : I --> ( Base `  S ) )
14 ffn 5730 . . . . . . 7  |-  ( V : I --> ( Base `  S )  ->  V  Fn  I )
1513, 14syl 16 . . . . . 6  |-  ( ph  ->  V  Fn  I )
162adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
1712adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Ring )
18 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
195, 10, 6, 16, 17, 18mvrcl 17898 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( V `  x )  e.  ( Base `  P
) )
2019ralrimiva 2878 . . . . . 6  |-  ( ph  ->  A. x  e.  I 
( V `  x
)  e.  ( Base `  P ) )
21 ffnfv 6046 . . . . . 6  |-  ( V : I --> ( Base `  P )  <->  ( V  Fn  I  /\  A. x  e.  I  ( V `  x )  e.  (
Base `  P )
) )
2215, 20, 21sylanbrc 664 . . . . 5  |-  ( ph  ->  V : I --> ( Base `  P ) )
23 frn 5736 . . . . 5  |-  ( V : I --> ( Base `  P )  ->  ran  V 
C_  ( Base `  P
) )
2422, 23syl 16 . . . 4  |-  ( ph  ->  ran  V  C_  ( Base `  P ) )
25 mplbas2.a . . . . 5  |-  A  =  (AlgSpan `  S )
2625, 7aspss 17768 . . . 4  |-  ( ( S  e. AssAlg  /\  ( Base `  P )  C_  ( Base `  S )  /\  ran  V  C_  ( Base `  P ) )  ->  ( A `  ran  V )  C_  ( A `  ( Base `  P ) ) )
274, 9, 24, 26syl3anc 1228 . . 3  |-  ( ph  ->  ( A `  ran  V )  C_  ( A `  ( Base `  P
) ) )
281, 5, 6, 2, 12mplsubrg 17889 . . . 4  |-  ( ph  ->  ( Base `  P
)  e.  (SubRing `  S
) )
291, 5, 6, 2, 12mpllss 17886 . . . 4  |-  ( ph  ->  ( Base `  P
)  e.  ( LSubSp `  S ) )
30 eqid 2467 . . . . 5  |-  ( LSubSp `  S )  =  (
LSubSp `  S )
3125, 7, 30aspid 17766 . . . 4  |-  ( ( S  e. AssAlg  /\  ( Base `  P )  e.  (SubRing `  S )  /\  ( Base `  P
)  e.  ( LSubSp `  S ) )  -> 
( A `  ( Base `  P ) )  =  ( Base `  P
) )
324, 28, 29, 31syl3anc 1228 . . 3  |-  ( ph  ->  ( A `  ( Base `  P ) )  =  ( Base `  P
) )
3327, 32sseqtrd 3540 . 2  |-  ( ph  ->  ( A `  ran  V )  C_  ( Base `  P ) )
34 eqid 2467 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
35 eqid 2467 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
36 eqid 2467 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
372adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  I  e.  W )
38 eqid 2467 . . . . . 6  |-  ( .s
`  P )  =  ( .s `  P
)
3912adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  R  e.  Ring )
40 simpr 461 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  e.  ( Base `  P )
)
415, 34, 35, 36, 37, 6, 38, 39, 40mplcoe1 17914 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  =  ( P  gsumg  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) ) )
42 eqid 2467 . . . . . 6  |-  ( 0g
`  P )  =  ( 0g `  P
)
435mplrng 17901 . . . . . . . . 9  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  Ring )
442, 12, 43syl2anc 661 . . . . . . . 8  |-  ( ph  ->  P  e.  Ring )
45 rngabl 17024 . . . . . . . 8  |-  ( P  e.  Ring  ->  P  e. 
Abel )
4644, 45syl 16 . . . . . . 7  |-  ( ph  ->  P  e.  Abel )
4746adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  P  e.  Abel )
48 ovex 6308 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
4948rabex 4598 . . . . . . 7  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
5049a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  e.  _V )
5124, 8syl6ss 3516 . . . . . . . . . 10  |-  ( ph  ->  ran  V  C_  ( Base `  S ) )
5225, 7aspsubrg 17767 . . . . . . . . . 10  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ( A `  ran  V )  e.  (SubRing `  S
) )
534, 51, 52syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( A `  ran  V )  e.  (SubRing `  S
) )
545, 1, 6mplval2 17877 . . . . . . . . . . 11  |-  P  =  ( Ss  ( Base `  P
) )
5554subsubrg 17250 . . . . . . . . . 10  |-  ( (
Base `  P )  e.  (SubRing `  S )  ->  ( ( A `  ran  V )  e.  (SubRing `  P )  <->  ( ( A `  ran  V )  e.  (SubRing `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
5628, 55syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( A `  ran  V )  e.  (SubRing `  P )  <->  ( ( A `  ran  V )  e.  (SubRing `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
5753, 33, 56mpbir2and 920 . . . . . . . 8  |-  ( ph  ->  ( A `  ran  V )  e.  (SubRing `  P
) )
58 subrgsubg 17230 . . . . . . . 8  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( A `  ran  V )  e.  (SubGrp `  P )
)
5957, 58syl 16 . . . . . . 7  |-  ( ph  ->  ( A `  ran  V )  e.  (SubGrp `  P ) )
6059adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( A `  ran  V )  e.  (SubGrp `  P )
)
615mpllmod 17900 . . . . . . . . . 10  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  LMod )
622, 12, 61syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  P  e.  LMod )
6362ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  P  e.  LMod )
6425, 7, 30asplss 17765 . . . . . . . . . . 11  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ( A `  ran  V )  e.  ( LSubSp `  S
) )
654, 51, 64syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( A `  ran  V )  e.  ( LSubSp `  S ) )
661, 2, 12psrlmod 17841 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  LMod )
67 eqid 2467 . . . . . . . . . . . 12  |-  ( LSubSp `  P )  =  (
LSubSp `  P )
6854, 30, 67lsslss 17402 . . . . . . . . . . 11  |-  ( ( S  e.  LMod  /\  ( Base `  P )  e.  ( LSubSp `  S )
)  ->  ( ( A `  ran  V )  e.  ( LSubSp `  P
)  <->  ( ( A `
 ran  V )  e.  ( LSubSp `  S )  /\  ( A `  ran  V )  C_  ( Base `  P ) ) ) )
6966, 29, 68syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( A `  ran  V )  e.  (
LSubSp `  P )  <->  ( ( A `  ran  V )  e.  ( LSubSp `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
7065, 33, 69mpbir2and 920 . . . . . . . . 9  |-  ( ph  ->  ( A `  ran  V )  e.  ( LSubSp `  P ) )
7170ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  ( LSubSp `  P
) )
72 eqid 2467 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
735, 72, 6, 34, 40mplelf 17879 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
7473ffvelrnda 6020 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
x `  k )  e.  ( Base `  R
) )
755, 37, 39mplsca 17894 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  R  =  (Scalar `  P ) )
7675adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  =  (Scalar `  P )
)
7776fveq2d 5869 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( Base `  R )  =  ( Base `  (Scalar `  P ) ) )
7874, 77eleqtrd 2557 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
x `  k )  e.  ( Base `  (Scalar `  P ) ) )
792ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  I  e.  W )
80 eqid 2467 . . . . . . . . . 10  |-  (mulGrp `  P )  =  (mulGrp `  P )
81 eqid 2467 . . . . . . . . . 10  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
823ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  e.  CRing )
83 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )
845, 34, 35, 36, 79, 80, 81, 10, 82, 83mplcoe2 17919 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  =  ( (mulGrp `  P )  gsumg  ( z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) ) )
85 eqid 2467 . . . . . . . . . . 11  |-  ( 1r
`  P )  =  ( 1r `  P
)
8680, 85rngidval 16954 . . . . . . . . . 10  |-  ( 1r
`  P )  =  ( 0g `  (mulGrp `  P ) )
875mplcrng 17902 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  R  e.  CRing )  ->  P  e.  CRing )
882, 3, 87syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CRing )
8980crngmgp 17003 . . . . . . . . . . . 12  |-  ( P  e.  CRing  ->  (mulGrp `  P
)  e. CMnd )
9088, 89syl 16 . . . . . . . . . . 11  |-  ( ph  ->  (mulGrp `  P )  e. CMnd )
9190ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (mulGrp `  P )  e. CMnd )
9257ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  (SubRing `  P
) )
9380subrgsubm 17237 . . . . . . . . . . 11  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( A `  ran  V )  e.  (SubMnd `  (mulGrp `  P
) ) )
9492, 93syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  (SubMnd `  (mulGrp `  P ) ) )
95 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ph )
9634psrbag 17800 . . . . . . . . . . . . . . . 16  |-  ( I  e.  W  ->  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  <->  ( k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
) )
9737, 96syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  <->  ( k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
) )
9897biimpa 484 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
)
9998simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  k : I --> NN0 )
10099ffvelrnda 6020 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( k `  z )  e.  NN0 )
10125, 7aspssid 17769 . . . . . . . . . . . . . . 15  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ran  V 
C_  ( A `  ran  V ) )
1024, 51, 101syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  V  C_  ( A `  ran  V ) )
103102ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ran  V  C_  ( A `  ran  V
) )
10415ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  V  Fn  I )
105 fnfvelrn 6017 . . . . . . . . . . . . . 14  |-  ( ( V  Fn  I  /\  z  e.  I )  ->  ( V `  z
)  e.  ran  V
)
106104, 105sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( V `  z )  e.  ran  V )
107103, 106sseldd 3505 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( V `  z )  e.  ( A `  ran  V
) )
10880, 6mgpbas 16946 . . . . . . . . . . . . 13  |-  ( Base `  P )  =  (
Base `  (mulGrp `  P
) )
109 eqid 2467 . . . . . . . . . . . . . 14  |-  ( .r
`  P )  =  ( .r `  P
)
11080, 109mgpplusg 16944 . . . . . . . . . . . . 13  |-  ( .r
`  P )  =  ( +g  `  (mulGrp `  P ) )
111109subrgmcl 17236 . . . . . . . . . . . . . 14  |-  ( ( ( A `  ran  V )  e.  (SubRing `  P
)  /\  u  e.  ( A `  ran  V
)  /\  v  e.  ( A `  ran  V
) )  ->  (
u ( .r `  P ) v )  e.  ( A `  ran  V ) )
11257, 111syl3an1 1261 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A `  ran  V
)  /\  v  e.  ( A `  ran  V
) )  ->  (
u ( .r `  P ) v )  e.  ( A `  ran  V ) )
11385subrg1cl 17232 . . . . . . . . . . . . . 14  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( 1r `  P )  e.  ( A `  ran  V
) )
11457, 113syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1r `  P
)  e.  ( A `
 ran  V )
)
115108, 81, 110, 90, 33, 112, 86, 114mulgnn0subcl 15962 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k `  z )  e.  NN0  /\  ( V `  z
)  e.  ( A `
 ran  V )
)  ->  ( (
k `  z )
(.g `  (mulGrp `  P
) ) ( V `
 z ) )  e.  ( A `  ran  V ) )
11695, 100, 107, 115syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( (
k `  z )
(.g `  (mulGrp `  P
) ) ( V `
 z ) )  e.  ( A `  ran  V ) )
117 eqid 2467 . . . . . . . . . . 11  |-  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )  =  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )
118116, 117fmptd 6044 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) : I --> ( A `
 ran  V )
)
119 mptexg 6129 . . . . . . . . . . . . 13  |-  ( I  e.  W  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )  e.  _V )
1202, 119syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) )  e.  _V )
121120ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )  e.  _V )
122 funmpt 5623 . . . . . . . . . . . 12  |-  Fun  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )
123122a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  Fun  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) ) )
124 fvex 5875 . . . . . . . . . . . 12  |-  ( 1r
`  P )  e. 
_V
125124a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( 1r `  P )  e. 
_V )
12698simprd 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( `' k " NN )  e.  Fin )
127 elrabi 3258 . . . . . . . . . . . . . . 15  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  k  e.  ( NN0  ^m  I ) )
128 elmapi 7440 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( NN0  ^m  I )  ->  k : I --> NN0 )
129128adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  k : I --> NN0 )
1302ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  I  e.  W )
131 frnnn0supp 10848 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  k : I --> NN0 )  ->  ( k supp  0 )  =  ( `' k
" NN ) )
132130, 129, 131syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  (
k supp  0 )  =  ( `' k " NN ) )
133 eqimss 3556 . . . . . . . . . . . . . . . . 17  |-  ( ( k supp  0 )  =  ( `' k " NN )  ->  ( k supp  0 )  C_  ( `' k " NN ) )
134132, 133syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  (
k supp  0 )  C_  ( `' k " NN ) )
135 c0ex 9589 . . . . . . . . . . . . . . . . 17  |-  0  e.  _V
136135a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  0  e.  _V )
137129, 134, 130, 136suppssr 6931 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  ( NN0  ^m  I ) )  /\  z  e.  ( I  \  ( `' k
" NN ) ) )  ->  ( k `  z )  =  0 )
138127, 137sylanl2 651 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
k `  z )  =  0 )
139138oveq1d 6298 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 0 (.g `  (mulGrp `  P )
) ( V `  z ) ) )
1402ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  I  e.  W )
14112ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  R  e.  Ring )
142 eldifi 3626 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( I  \ 
( `' k " NN ) )  ->  z  e.  I )
143142adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  z  e.  I )
1445, 10, 6, 140, 141, 143mvrcl 17898 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  ( V `  z )  e.  ( Base `  P
) )
145108, 86, 81mulg0 15954 . . . . . . . . . . . . . 14  |-  ( ( V `  z )  e.  ( Base `  P
)  ->  ( 0 (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
146144, 145syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
0 (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
147139, 146eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
148147, 79suppss2 6934 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) ) supp  ( 1r
`  P ) ) 
C_  ( `' k
" NN ) )
149 suppssfifsupp 7843 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  I  |->  ( ( k `
 z ) (.g `  (mulGrp `  P )
) ( V `  z ) ) )  e.  _V  /\  Fun  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) )  /\  ( 1r `  P )  e. 
_V )  /\  (
( `' k " NN )  e.  Fin  /\  ( ( z  e.  I  |->  ( ( k `
 z ) (.g `  (mulGrp `  P )
) ( V `  z ) ) ) supp  ( 1r `  P
) )  C_  ( `' k " NN ) ) )  -> 
( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) ) finSupp  ( 1r
`  P ) )
150121, 123, 125, 126, 148, 149syl32anc 1236 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) finSupp  ( 1r `  P ) )
15186, 91, 79, 94, 118, 150gsumsubmcl 16730 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
(mulGrp `  P )  gsumg  ( z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) )  e.  ( A `  ran  V
) )
15284, 151eqeltrd 2555 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( A `  ran  V
) )
153 eqid 2467 . . . . . . . . 9  |-  (Scalar `  P )  =  (Scalar `  P )
154 eqid 2467 . . . . . . . . 9  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
155153, 38, 154, 67lssvscl 17396 . . . . . . . 8  |-  ( ( ( P  e.  LMod  /\  ( A `  ran  V )  e.  ( LSubSp `  P ) )  /\  ( ( x `  k )  e.  (
Base `  (Scalar `  P
) )  /\  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( A `  ran  V
) ) )  -> 
( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  e.  ( A `  ran  V ) )
15663, 71, 78, 152, 155syl22anc 1229 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  e.  ( A `  ran  V ) )
157 eqid 2467 . . . . . . 7  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  =  ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )
158156, 157fmptd 6044 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( A `  ran  V ) )
15948mptrabex 6131 . . . . . . . . 9  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  e.  _V
160 funmpt 5623 . . . . . . . . 9  |-  Fun  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
161 fvex 5875 . . . . . . . . 9  |-  ( 0g
`  P )  e. 
_V
162159, 160, 1613pm3.2i 1174 . . . . . . . 8  |-  ( ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  e.  _V  /\  Fun  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  /\  ( 0g `  P )  e.  _V )
163162a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  e.  _V  /\  Fun  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  /\  ( 0g `  P )  e.  _V ) )
1645, 1, 7, 35, 6mplelbas 17874 . . . . . . . . . 10  |-  ( x  e.  ( Base `  P
)  <->  ( x  e.  ( Base `  S
)  /\  x finSupp  ( 0g
`  R ) ) )
165164simprbi 464 . . . . . . . . 9  |-  ( x  e.  ( Base `  P
)  ->  x finSupp  ( 0g
`  R ) )
166165adantl 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x finSupp  ( 0g
`  R ) )
167166fsuppimpd 7835 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( x supp  ( 0g `  R ) )  e.  Fin )
168 ssid 3523 . . . . . . . . . . . . 13  |-  ( x supp  ( 0g `  R
) )  C_  (
x supp  ( 0g `  R ) )
169168a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( x supp  ( 0g `  R ) )  C_  ( x supp  ( 0g `  R ) ) )
170 fvex 5875 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
171170a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( 0g `  R )  e.  _V )
17273, 169, 50, 171suppssr 6931 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
x `  k )  =  ( 0g `  R ) )
17375fveq2d 5869 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
174173adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
175172, 174eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
x `  k )  =  ( 0g `  (Scalar `  P ) ) )
176175oveq1d 6298 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( ( 0g `  (Scalar `  P ) ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )
177 eldifi 3626 . . . . . . . . . 10  |-  ( k  e.  ( { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) )  ->  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
17812ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  e.  Ring )
1795, 6, 35, 36, 34, 79, 178, 83mplmon 17912 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  (
Base `  P )
)
180 eqid 2467 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  P )
)  =  ( 0g
`  (Scalar `  P )
)
1816, 153, 38, 180, 42lmod0vs 17340 . . . . . . . . . . 11  |-  ( ( P  e.  LMod  /\  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  (
Base `  P )
)  ->  ( ( 0g `  (Scalar `  P
) ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( 0g `  P
) )
18263, 179, 181syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( 0g `  (Scalar `  P ) ) ( .s `  P ) ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  k ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )  =  ( 0g `  P ) )
183177, 182sylan2 474 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
( 0g `  (Scalar `  P ) ) ( .s `  P ) ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  k ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )  =  ( 0g `  P ) )
184176, 183eqtrd 2508 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( 0g `  P
) )
185184, 50suppss2 6934 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) supp  ( 0g `  P
) )  C_  (
x supp  ( 0g `  R ) ) )
186 suppssfifsupp 7843 . . . . . . 7  |-  ( ( ( ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )  e. 
_V  /\  Fun  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  /\  ( 0g `  P )  e.  _V )  /\  ( ( x supp  ( 0g `  R
) )  e.  Fin  /\  ( ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) supp  ( 0g `  P ) ) 
C_  ( x supp  ( 0g `  R ) ) ) )  ->  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) finSupp 
( 0g `  P
) )
187163, 167, 185, 186syl12anc 1226 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) finSupp  ( 0g `  P ) )
18842, 47, 50, 60, 158, 187gsumsubgcl 16732 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( P  gsumg  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) )  e.  ( A `
 ran  V )
)
18941, 188eqeltrd 2555 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  e.  ( A `  ran  V
) )
190189ex 434 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  P )  ->  x  e.  ( A `
 ran  V )
) )
191190ssrdv 3510 . 2  |-  ( ph  ->  ( Base `  P
)  C_  ( A `  ran  V ) )
19233, 191eqssd 3521 1  |-  ( ph  ->  ( A `  ran  V )  =  ( Base `  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113    \ cdif 3473    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   ran crn 5000   "cima 5002   Fun wfun 5581    Fn wfn 5582   -->wf 5583   ` cfv 5587  (class class class)co 6283   supp csupp 6901    ^m cmap 7420   Fincfn 7516   finSupp cfsupp 7828   0cc0 9491   NNcn 10535   NN0cn0 10794   Basecbs 14489   .rcmulr 14555  Scalarcsca 14557   .scvsca 14558   0gc0g 14694    gsumg cgsu 14695  .gcmg 15730  SubMndcsubmnd 15782  SubGrpcsubg 15997  CMndccmn 16601   Abelcabl 16602  mulGrpcmgp 16940   1rcur 16952   Ringcrg 16995   CRingccrg 16996  SubRingcsubrg 17220   LModclmod 17307   LSubSpclss 17373  AssAlgcasa 17745  AlgSpancasp 17746   mPwSer cmps 17787   mVar cmvr 17788   mPoly cmpl 17789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-ofr 6524  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-oi 7934  df-card 8319  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-n0 10795  df-z 10864  df-uz 11082  df-fz 11672  df-fzo 11792  df-seq 12075  df-hash 12373  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-sca 14570  df-vsca 14571  df-tset 14573  df-0g 14696  df-gsum 14697  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-mhm 15783  df-submnd 15784  df-grp 15864  df-minusg 15865  df-sbg 15866  df-mulg 15867  df-subg 16000  df-ghm 16067  df-cntz 16157  df-cmn 16603  df-abl 16604  df-mgp 16941  df-ur 16953  df-srg 16957  df-rng 16997  df-cring 16998  df-subrg 17222  df-lmod 17309  df-lss 17374  df-assa 17748  df-asp 17749  df-psr 17792  df-mvr 17793  df-mpl 17794
This theorem is referenced by:  mplind  17954  evlseu  17972
  Copyright terms: Public domain W3C validator