MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbas2 Structured version   Unicode version

Theorem mplbas2 17531
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mplbas2.p  |-  P  =  ( I mPoly  R )
mplbas2.s  |-  S  =  ( I mPwSer  R )
mplbas2.v  |-  V  =  ( I mVar  R )
mplbas2.a  |-  A  =  (AlgSpan `  S )
mplbas2.i  |-  ( ph  ->  I  e.  W )
mplbas2.r  |-  ( ph  ->  R  e.  CRing )
Assertion
Ref Expression
mplbas2  |-  ( ph  ->  ( A `  ran  V )  =  ( Base `  P ) )

Proof of Theorem mplbas2
Dummy variables  u  k  v  x  z 
y  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplbas2.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 mplbas2.i . . . . 5  |-  ( ph  ->  I  e.  W )
3 mplbas2.r . . . . 5  |-  ( ph  ->  R  e.  CRing )
41, 2, 3psrassa 17466 . . . 4  |-  ( ph  ->  S  e. AssAlg )
5 mplbas2.p . . . . . 6  |-  P  =  ( I mPoly  R )
6 eqid 2438 . . . . . 6  |-  ( Base `  P )  =  (
Base `  P )
7 eqid 2438 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
85, 1, 6, 7mplbasss 17488 . . . . 5  |-  ( Base `  P )  C_  ( Base `  S )
98a1i 11 . . . 4  |-  ( ph  ->  ( Base `  P
)  C_  ( Base `  S ) )
10 mplbas2.v . . . . . . . 8  |-  V  =  ( I mVar  R )
11 crngrng 16645 . . . . . . . . 9  |-  ( R  e.  CRing  ->  R  e.  Ring )
123, 11syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
131, 10, 7, 2, 12mvrf 17477 . . . . . . 7  |-  ( ph  ->  V : I --> ( Base `  S ) )
14 ffn 5554 . . . . . . 7  |-  ( V : I --> ( Base `  S )  ->  V  Fn  I )
1513, 14syl 16 . . . . . 6  |-  ( ph  ->  V  Fn  I )
162adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
1712adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Ring )
18 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
195, 10, 6, 16, 17, 18mvrcl 17508 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  ( V `  x )  e.  ( Base `  P
) )
2019ralrimiva 2794 . . . . . 6  |-  ( ph  ->  A. x  e.  I 
( V `  x
)  e.  ( Base `  P ) )
21 ffnfv 5864 . . . . . 6  |-  ( V : I --> ( Base `  P )  <->  ( V  Fn  I  /\  A. x  e.  I  ( V `  x )  e.  (
Base `  P )
) )
2215, 20, 21sylanbrc 664 . . . . 5  |-  ( ph  ->  V : I --> ( Base `  P ) )
23 frn 5560 . . . . 5  |-  ( V : I --> ( Base `  P )  ->  ran  V 
C_  ( Base `  P
) )
2422, 23syl 16 . . . 4  |-  ( ph  ->  ran  V  C_  ( Base `  P ) )
25 mplbas2.a . . . . 5  |-  A  =  (AlgSpan `  S )
2625, 7aspss 17383 . . . 4  |-  ( ( S  e. AssAlg  /\  ( Base `  P )  C_  ( Base `  S )  /\  ran  V  C_  ( Base `  P ) )  ->  ( A `  ran  V )  C_  ( A `  ( Base `  P ) ) )
274, 9, 24, 26syl3anc 1218 . . 3  |-  ( ph  ->  ( A `  ran  V )  C_  ( A `  ( Base `  P
) ) )
281, 5, 6, 2, 12mplsubrg 17499 . . . 4  |-  ( ph  ->  ( Base `  P
)  e.  (SubRing `  S
) )
291, 5, 6, 2, 12mpllss 17496 . . . 4  |-  ( ph  ->  ( Base `  P
)  e.  ( LSubSp `  S ) )
30 eqid 2438 . . . . 5  |-  ( LSubSp `  S )  =  (
LSubSp `  S )
3125, 7, 30aspid 17381 . . . 4  |-  ( ( S  e. AssAlg  /\  ( Base `  P )  e.  (SubRing `  S )  /\  ( Base `  P
)  e.  ( LSubSp `  S ) )  -> 
( A `  ( Base `  P ) )  =  ( Base `  P
) )
324, 28, 29, 31syl3anc 1218 . . 3  |-  ( ph  ->  ( A `  ( Base `  P ) )  =  ( Base `  P
) )
3327, 32sseqtrd 3387 . 2  |-  ( ph  ->  ( A `  ran  V )  C_  ( Base `  P ) )
34 eqid 2438 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
35 eqid 2438 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
36 eqid 2438 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
372adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  I  e.  W )
38 eqid 2438 . . . . . 6  |-  ( .s
`  P )  =  ( .s `  P
)
3912adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  R  e.  Ring )
40 simpr 461 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  e.  ( Base `  P )
)
415, 34, 35, 36, 37, 6, 38, 39, 40mplcoe1 17524 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  =  ( P  gsumg  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) ) )
42 eqid 2438 . . . . . 6  |-  ( 0g
`  P )  =  ( 0g `  P
)
435mplrng 17511 . . . . . . . . 9  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  Ring )
442, 12, 43syl2anc 661 . . . . . . . 8  |-  ( ph  ->  P  e.  Ring )
45 rngabl 16664 . . . . . . . 8  |-  ( P  e.  Ring  ->  P  e. 
Abel )
4644, 45syl 16 . . . . . . 7  |-  ( ph  ->  P  e.  Abel )
4746adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  P  e.  Abel )
48 ovex 6111 . . . . . . . 8  |-  ( NN0 
^m  I )  e. 
_V
4948rabex 4438 . . . . . . 7  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
5049a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  e.  _V )
5124, 8syl6ss 3363 . . . . . . . . . 10  |-  ( ph  ->  ran  V  C_  ( Base `  S ) )
5225, 7aspsubrg 17382 . . . . . . . . . 10  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ( A `  ran  V )  e.  (SubRing `  S
) )
534, 51, 52syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( A `  ran  V )  e.  (SubRing `  S
) )
545, 1, 6mplval2 17487 . . . . . . . . . . 11  |-  P  =  ( Ss  ( Base `  P
) )
5554subsubrg 16871 . . . . . . . . . 10  |-  ( (
Base `  P )  e.  (SubRing `  S )  ->  ( ( A `  ran  V )  e.  (SubRing `  P )  <->  ( ( A `  ran  V )  e.  (SubRing `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
5628, 55syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( A `  ran  V )  e.  (SubRing `  P )  <->  ( ( A `  ran  V )  e.  (SubRing `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
5753, 33, 56mpbir2and 913 . . . . . . . 8  |-  ( ph  ->  ( A `  ran  V )  e.  (SubRing `  P
) )
58 subrgsubg 16851 . . . . . . . 8  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( A `  ran  V )  e.  (SubGrp `  P )
)
5957, 58syl 16 . . . . . . 7  |-  ( ph  ->  ( A `  ran  V )  e.  (SubGrp `  P ) )
6059adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( A `  ran  V )  e.  (SubGrp `  P )
)
615mpllmod 17510 . . . . . . . . . 10  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  LMod )
622, 12, 61syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  P  e.  LMod )
6362ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  P  e.  LMod )
6425, 7, 30asplss 17380 . . . . . . . . . . 11  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ( A `  ran  V )  e.  ( LSubSp `  S
) )
654, 51, 64syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( A `  ran  V )  e.  ( LSubSp `  S ) )
661, 2, 12psrlmod 17452 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  LMod )
67 eqid 2438 . . . . . . . . . . . 12  |-  ( LSubSp `  P )  =  (
LSubSp `  P )
6854, 30, 67lsslss 17022 . . . . . . . . . . 11  |-  ( ( S  e.  LMod  /\  ( Base `  P )  e.  ( LSubSp `  S )
)  ->  ( ( A `  ran  V )  e.  ( LSubSp `  P
)  <->  ( ( A `
 ran  V )  e.  ( LSubSp `  S )  /\  ( A `  ran  V )  C_  ( Base `  P ) ) ) )
6966, 29, 68syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( A `  ran  V )  e.  (
LSubSp `  P )  <->  ( ( A `  ran  V )  e.  ( LSubSp `  S
)  /\  ( A `  ran  V )  C_  ( Base `  P )
) ) )
7065, 33, 69mpbir2and 913 . . . . . . . . 9  |-  ( ph  ->  ( A `  ran  V )  e.  ( LSubSp `  P ) )
7170ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  ( LSubSp `  P
) )
72 eqid 2438 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
735, 72, 6, 34, 40mplelf 17489 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
7473ffvelrnda 5838 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
x `  k )  e.  ( Base `  R
) )
755, 37, 39mplsca 17504 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  R  =  (Scalar `  P ) )
7675adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  =  (Scalar `  P )
)
7776fveq2d 5690 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( Base `  R )  =  ( Base `  (Scalar `  P ) ) )
7874, 77eleqtrd 2514 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
x `  k )  e.  ( Base `  (Scalar `  P ) ) )
792ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  I  e.  W )
80 eqid 2438 . . . . . . . . . 10  |-  (mulGrp `  P )  =  (mulGrp `  P )
81 eqid 2438 . . . . . . . . . 10  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
823ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  e.  CRing )
83 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )
845, 34, 35, 36, 79, 80, 81, 10, 82, 83mplcoe2 17529 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  =  ( (mulGrp `  P )  gsumg  ( z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) ) )
85 eqid 2438 . . . . . . . . . . 11  |-  ( 1r
`  P )  =  ( 1r `  P
)
8680, 85rngidval 16595 . . . . . . . . . 10  |-  ( 1r
`  P )  =  ( 0g `  (mulGrp `  P ) )
875mplcrng 17512 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  R  e.  CRing )  ->  P  e.  CRing )
882, 3, 87syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CRing )
8980crngmgp 16643 . . . . . . . . . . . 12  |-  ( P  e.  CRing  ->  (mulGrp `  P
)  e. CMnd )
9088, 89syl 16 . . . . . . . . . . 11  |-  ( ph  ->  (mulGrp `  P )  e. CMnd )
9190ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (mulGrp `  P )  e. CMnd )
9257ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  (SubRing `  P
) )
9380subrgsubm 16858 . . . . . . . . . . 11  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( A `  ran  V )  e.  (SubMnd `  (mulGrp `  P
) ) )
9492, 93syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( A `  ran  V )  e.  (SubMnd `  (mulGrp `  P ) ) )
95 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ph )
9634psrbag 17411 . . . . . . . . . . . . . . . 16  |-  ( I  e.  W  ->  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  <->  ( k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
) )
9737, 96syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  <->  ( k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
) )
9897biimpa 484 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
k : I --> NN0  /\  ( `' k " NN )  e.  Fin )
)
9998simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  k : I --> NN0 )
10099ffvelrnda 5838 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( k `  z )  e.  NN0 )
10125, 7aspssid 17384 . . . . . . . . . . . . . . 15  |-  ( ( S  e. AssAlg  /\  ran  V  C_  ( Base `  S
) )  ->  ran  V 
C_  ( A `  ran  V ) )
1024, 51, 101syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  V  C_  ( A `  ran  V ) )
103102ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ran  V  C_  ( A `  ran  V
) )
10415ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  V  Fn  I )
105 fnfvelrn 5835 . . . . . . . . . . . . . 14  |-  ( ( V  Fn  I  /\  z  e.  I )  ->  ( V `  z
)  e.  ran  V
)
106104, 105sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( V `  z )  e.  ran  V )
107103, 106sseldd 3352 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( V `  z )  e.  ( A `  ran  V
) )
10880, 6mgpbas 16587 . . . . . . . . . . . . 13  |-  ( Base `  P )  =  (
Base `  (mulGrp `  P
) )
109 eqid 2438 . . . . . . . . . . . . . 14  |-  ( .r
`  P )  =  ( .r `  P
)
11080, 109mgpplusg 16585 . . . . . . . . . . . . 13  |-  ( .r
`  P )  =  ( +g  `  (mulGrp `  P ) )
111109subrgmcl 16857 . . . . . . . . . . . . . 14  |-  ( ( ( A `  ran  V )  e.  (SubRing `  P
)  /\  u  e.  ( A `  ran  V
)  /\  v  e.  ( A `  ran  V
) )  ->  (
u ( .r `  P ) v )  e.  ( A `  ran  V ) )
11257, 111syl3an1 1251 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A `  ran  V
)  /\  v  e.  ( A `  ran  V
) )  ->  (
u ( .r `  P ) v )  e.  ( A `  ran  V ) )
11385subrg1cl 16853 . . . . . . . . . . . . . 14  |-  ( ( A `  ran  V
)  e.  (SubRing `  P
)  ->  ( 1r `  P )  e.  ( A `  ran  V
) )
11457, 113syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1r `  P
)  e.  ( A `
 ran  V )
)
115108, 81, 110, 90, 33, 112, 86, 114mulgnn0subcl 15631 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k `  z )  e.  NN0  /\  ( V `  z
)  e.  ( A `
 ran  V )
)  ->  ( (
k `  z )
(.g `  (mulGrp `  P
) ) ( V `
 z ) )  e.  ( A `  ran  V ) )
11695, 100, 107, 115syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  I
)  ->  ( (
k `  z )
(.g `  (mulGrp `  P
) ) ( V `
 z ) )  e.  ( A `  ran  V ) )
117 eqid 2438 . . . . . . . . . . 11  |-  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )  =  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )
118116, 117fmptd 5862 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) : I --> ( A `
 ran  V )
)
119 mptexg 5942 . . . . . . . . . . . . 13  |-  ( I  e.  W  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )  e.  _V )
1202, 119syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) )  e.  _V )
121120ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )  e.  _V )
122 funmpt 5449 . . . . . . . . . . . 12  |-  Fun  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) )
123122a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  Fun  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) ) )
124 fvex 5696 . . . . . . . . . . . 12  |-  ( 1r
`  P )  e. 
_V
125124a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( 1r `  P )  e. 
_V )
12698simprd 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( `' k " NN )  e.  Fin )
127 elrabi 3109 . . . . . . . . . . . . . . 15  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  k  e.  ( NN0  ^m  I ) )
128 elmapi 7226 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( NN0  ^m  I )  ->  k : I --> NN0 )
129128adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  k : I --> NN0 )
1302ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  I  e.  W )
131 frnnn0supp 10625 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  k : I --> NN0 )  ->  ( k supp  0 )  =  ( `' k
" NN ) )
132130, 129, 131syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  (
k supp  0 )  =  ( `' k " NN ) )
133 eqimss 3403 . . . . . . . . . . . . . . . . 17  |-  ( ( k supp  0 )  =  ( `' k " NN )  ->  ( k supp  0 )  C_  ( `' k " NN ) )
134132, 133syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  (
k supp  0 )  C_  ( `' k " NN ) )
135 c0ex 9372 . . . . . . . . . . . . . . . . 17  |-  0  e.  _V
136135a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( NN0  ^m  I
) )  ->  0  e.  _V )
137129, 134, 130, 136suppssr 6715 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  ( NN0  ^m  I ) )  /\  z  e.  ( I  \  ( `' k
" NN ) ) )  ->  ( k `  z )  =  0 )
138127, 137sylanl2 651 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
k `  z )  =  0 )
139138oveq1d 6101 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 0 (.g `  (mulGrp `  P )
) ( V `  z ) ) )
1402ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  I  e.  W )
14112ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  R  e.  Ring )
142 eldifi 3473 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( I  \ 
( `' k " NN ) )  ->  z  e.  I )
143142adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  z  e.  I )
1445, 10, 6, 140, 141, 143mvrcl 17508 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  ( V `  z )  e.  ( Base `  P
) )
145108, 86, 81mulg0 15623 . . . . . . . . . . . . . 14  |-  ( ( V `  z )  e.  ( Base `  P
)  ->  ( 0 (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
146144, 145syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
0 (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
147139, 146eqtrd 2470 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  ( Base `  P ) )  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  /\  z  e.  ( I  \  ( `' k " NN ) ) )  ->  (
( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) )  =  ( 1r `  P ) )
148147, 79suppss2 6718 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) ) supp  ( 1r
`  P ) ) 
C_  ( `' k
" NN ) )
149 suppssfifsupp 7627 . . . . . . . . . . 11  |-  ( ( ( ( z  e.  I  |->  ( ( k `
 z ) (.g `  (mulGrp `  P )
) ( V `  z ) ) )  e.  _V  /\  Fun  ( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) )  /\  ( 1r `  P )  e. 
_V )  /\  (
( `' k " NN )  e.  Fin  /\  ( ( z  e.  I  |->  ( ( k `
 z ) (.g `  (mulGrp `  P )
) ( V `  z ) ) ) supp  ( 1r `  P
) )  C_  ( `' k " NN ) ) )  -> 
( z  e.  I  |->  ( ( k `  z ) (.g `  (mulGrp `  P ) ) ( V `  z ) ) ) finSupp  ( 1r
`  P ) )
150121, 123, 125, 126, 148, 149syl32anc 1226 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) finSupp  ( 1r `  P ) )
15186, 91, 79, 94, 118, 150gsumsubmcl 16395 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
(mulGrp `  P )  gsumg  ( z  e.  I  |->  ( ( k `  z
) (.g `  (mulGrp `  P
) ) ( V `
 z ) ) ) )  e.  ( A `  ran  V
) )
15284, 151eqeltrd 2512 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( A `  ran  V
) )
153 eqid 2438 . . . . . . . . 9  |-  (Scalar `  P )  =  (Scalar `  P )
154 eqid 2438 . . . . . . . . 9  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
155153, 38, 154, 67lssvscl 17016 . . . . . . . 8  |-  ( ( ( P  e.  LMod  /\  ( A `  ran  V )  e.  ( LSubSp `  P ) )  /\  ( ( x `  k )  e.  (
Base `  (Scalar `  P
) )  /\  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  ( A `  ran  V
) ) )  -> 
( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  e.  ( A `  ran  V ) )
15663, 71, 78, 152, 155syl22anc 1219 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  e.  ( A `  ran  V ) )
157 eqid 2438 . . . . . . 7  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  =  ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )
158156, 157fmptd 5862 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( A `  ran  V ) )
15948mptrabex 5944 . . . . . . . . 9  |-  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  e.  _V
160 funmpt 5449 . . . . . . . . 9  |-  Fun  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
161 fvex 5696 . . . . . . . . 9  |-  ( 0g
`  P )  e. 
_V
162159, 160, 1613pm3.2i 1166 . . . . . . . 8  |-  ( ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  e.  _V  /\  Fun  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  /\  ( 0g `  P )  e.  _V )
163162a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  e.  _V  /\  Fun  ( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( ( x `  k ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  /\  ( 0g `  P )  e.  _V ) )
1645, 1, 7, 35, 6mplelbas 17484 . . . . . . . . . 10  |-  ( x  e.  ( Base `  P
)  <->  ( x  e.  ( Base `  S
)  /\  x finSupp  ( 0g
`  R ) ) )
165164simprbi 464 . . . . . . . . 9  |-  ( x  e.  ( Base `  P
)  ->  x finSupp  ( 0g
`  R ) )
166165adantl 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x finSupp  ( 0g
`  R ) )
167166fsuppimpd 7619 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( x supp  ( 0g `  R ) )  e.  Fin )
168 ssid 3370 . . . . . . . . . . . . 13  |-  ( x supp  ( 0g `  R
) )  C_  (
x supp  ( 0g `  R ) )
169168a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( x supp  ( 0g `  R ) )  C_  ( x supp  ( 0g `  R ) ) )
170 fvex 5696 . . . . . . . . . . . . 13  |-  ( 0g
`  R )  e. 
_V
171170a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( 0g `  R )  e.  _V )
17273, 169, 50, 171suppssr 6715 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
x `  k )  =  ( 0g `  R ) )
17375fveq2d 5690 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
174173adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
175172, 174eqtrd 2470 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
x `  k )  =  ( 0g `  (Scalar `  P ) ) )
176175oveq1d 6101 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( ( 0g `  (Scalar `  P ) ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )
177 eldifi 3473 . . . . . . . . . 10  |-  ( k  e.  ( { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) )  ->  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
17812ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  R  e.  Ring )
1795, 6, 35, 36, 34, 79, 178, 83mplmon 17522 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  (
Base `  P )
)
180 eqid 2438 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  P )
)  =  ( 0g
`  (Scalar `  P )
)
1816, 153, 38, 180, 42lmod0vs 16961 . . . . . . . . . . 11  |-  ( ( P  e.  LMod  /\  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) )  e.  (
Base `  P )
)  ->  ( ( 0g `  (Scalar `  P
) ) ( .s
`  P ) ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( 0g `  P
) )
18263, 179, 181syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  (
( 0g `  (Scalar `  P ) ) ( .s `  P ) ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  k ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )  =  ( 0g `  P ) )
183177, 182sylan2 474 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
( 0g `  (Scalar `  P ) ) ( .s `  P ) ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  k ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )  =  ( 0g `  P ) )
184176, 183eqtrd 2470 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( Base `  P
) )  /\  k  e.  ( { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  \ 
( x supp  ( 0g
`  R ) ) ) )  ->  (
( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) )  =  ( 0g `  P
) )
185184, 50suppss2 6718 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) supp  ( 0g `  P
) )  C_  (
x supp  ( 0g `  R ) ) )
186 suppssfifsupp 7627 . . . . . . 7  |-  ( ( ( ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) )  e. 
_V  /\  Fun  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )  /\  ( 0g `  P )  e.  _V )  /\  ( ( x supp  ( 0g `  R
) )  e.  Fin  /\  ( ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) supp  ( 0g `  P ) ) 
C_  ( x supp  ( 0g `  R ) ) ) )  ->  (
k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) finSupp 
( 0g `  P
) )
187163, 167, 185, 186syl12anc 1216 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( ( x `  k ) ( .s `  P
) ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  k ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ) ) finSupp  ( 0g `  P ) )
18842, 47, 50, 60, 158, 187gsumsubgcl 16397 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  ( P  gsumg  ( k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  ( ( x `  k
) ( .s `  P ) ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  k ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ) )  e.  ( A `
 ran  V )
)
18941, 188eqeltrd 2512 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  P )
)  ->  x  e.  ( A `  ran  V
) )
190189ex 434 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  P )  ->  x  e.  ( A `
 ran  V )
) )
191190ssrdv 3357 . 2  |-  ( ph  ->  ( Base `  P
)  C_  ( A `  ran  V ) )
19233, 191eqssd 3368 1  |-  ( ph  ->  ( A `  ran  V )  =  ( Base `  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   _Vcvv 2967    \ cdif 3320    C_ wss 3323   ifcif 3786   class class class wbr 4287    e. cmpt 4345   `'ccnv 4834   ran crn 4836   "cima 4838   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086   supp csupp 6685    ^m cmap 7206   Fincfn 7302   finSupp cfsupp 7612   0cc0 9274   NNcn 10314   NN0cn0 10571   Basecbs 14166   .rcmulr 14231  Scalarcsca 14233   .scvsca 14234   0gc0g 14370    gsumg cgsu 14371  .gcmg 15406  SubMndcsubmnd 15455  SubGrpcsubg 15666  CMndccmn 16268   Abelcabel 16269  mulGrpcmgp 16581   1rcur 16593   Ringcrg 16635   CRingccrg 16636  SubRingcsubrg 16841   LModclmod 16928   LSubSpclss 16993  AssAlgcasa 17361  AlgSpancasp 17362   mPwSer cmps 17398   mVar cmvr 17399   mPoly cmpl 17400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-ofr 6316  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541  df-seq 11799  df-hash 12096  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-sca 14246  df-vsca 14247  df-tset 14249  df-0g 14372  df-gsum 14373  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-mhm 15456  df-submnd 15457  df-grp 15536  df-minusg 15537  df-sbg 15538  df-mulg 15539  df-subg 15669  df-ghm 15736  df-cntz 15826  df-cmn 16270  df-abl 16271  df-mgp 16582  df-ur 16594  df-srg 16598  df-rng 16637  df-cring 16638  df-subrg 16843  df-lmod 16930  df-lss 16994  df-assa 17364  df-asp 17365  df-psr 17403  df-mvr 17404  df-mpl 17405
This theorem is referenced by:  mplind  17564  evlseu  17582
  Copyright terms: Public domain W3C validator