MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpjao3dan Structured version   Unicode version

Theorem mpjao3dan 1286
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
mpjao3dan.1  |-  ( (
ph  /\  ps )  ->  ch )
mpjao3dan.2  |-  ( (
ph  /\  th )  ->  ch )
mpjao3dan.3  |-  ( (
ph  /\  ta )  ->  ch )
mpjao3dan.4  |-  ( ph  ->  ( ps  \/  th  \/  ta ) )
Assertion
Ref Expression
mpjao3dan  |-  ( ph  ->  ch )

Proof of Theorem mpjao3dan
StepHypRef Expression
1 mpjao3dan.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
2 mpjao3dan.2 . . 3  |-  ( (
ph  /\  th )  ->  ch )
31, 2jaodan 783 . 2  |-  ( (
ph  /\  ( ps  \/  th ) )  ->  ch )
4 mpjao3dan.3 . 2  |-  ( (
ph  /\  ta )  ->  ch )
5 mpjao3dan.4 . . 3  |-  ( ph  ->  ( ps  \/  th  \/  ta ) )
6 df-3or 966 . . 3  |-  ( ( ps  \/  th  \/  ta )  <->  ( ( ps  \/  th )  \/ 
ta ) )
75, 6sylib 196 . 2  |-  ( ph  ->  ( ( ps  \/  th )  \/  ta )
)
83, 4, 7mpjaodan 784 1  |-  ( ph  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    \/ w3o 964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966
This theorem is referenced by:  tgdim01ln  23135  lnxfr  23136  lnext  23137  tgfscgr  23138  tglineeltr  23177  colmid  23226  archirngz  26352  archiabllem1b  26355  sgnmulsgn  27077  sgnmulsgp  27078
  Copyright terms: Public domain W3C validator