MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpan2i Structured version   Unicode version

Theorem mpan2i 677
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpan2i.1  |-  ch
mpan2i.2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
mpan2i  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem mpan2i
StepHypRef Expression
1 mpan2i.1 . . 3  |-  ch
21a1i 11 . 2  |-  ( ph  ->  ch )
3 mpan2i.2 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
42, 3mpan2d 674 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  tcwf  8090  cflecard  8422  sqrlem7  12738  setciso  14959  lsmss1  16163  sincosq1lem  21959  pjcompi  25075  mdsl1i  25725  dfon2lem3  27598  dfon2lem7  27602  tan2h  28424  dvasin  28480  ismrc  29037
  Copyright terms: Public domain W3C validator