Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaeu Structured version   Unicode version

Theorem mpaaeu 29460
Description: An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaeu  |-  ( A  e.  AA  ->  E! p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 ) )
Distinct variable group:    A, p

Proof of Theorem mpaaeu
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dgraalem 29455 . . . 4  |-  ( A  e.  AA  ->  (
(degAA `
 A )  e.  NN  /\  E. a  e.  ( (Poly `  QQ )  \  { 0p } ) ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) ) )
21simprd 463 . . 3  |-  ( A  e.  AA  ->  E. a  e.  ( (Poly `  QQ )  \  { 0p } ) ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )
3 qsscn 10956 . . . . . . . 8  |-  QQ  C_  CC
4 eldifi 3473 . . . . . . . . . . . 12  |-  ( a  e.  ( (Poly `  QQ )  \  { 0p } )  -> 
a  e.  (Poly `  QQ ) )
54ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  a  e.  (Poly `  QQ ) )
6 zssq 10952 . . . . . . . . . . . 12  |-  ZZ  C_  QQ
7 0z 10649 . . . . . . . . . . . 12  |-  0  e.  ZZ
86, 7sselii 3348 . . . . . . . . . . 11  |-  0  e.  QQ
9 eqid 2438 . . . . . . . . . . . 12  |-  (coeff `  a )  =  (coeff `  a )
109coef2 21674 . . . . . . . . . . 11  |-  ( ( a  e.  (Poly `  QQ )  /\  0  e.  QQ )  ->  (coeff `  a ) : NN0 --> QQ )
115, 8, 10sylancl 662 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  a
) : NN0 --> QQ )
12 dgrcl 21676 . . . . . . . . . . 11  |-  ( a  e.  (Poly `  QQ )  ->  (deg `  a
)  e.  NN0 )
135, 12syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  a
)  e.  NN0 )
1411, 13ffvelrnd 5839 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  a ) `  (deg `  a ) )  e.  QQ )
15 eldifsni 3996 . . . . . . . . . . 11  |-  ( a  e.  ( (Poly `  QQ )  \  { 0p } )  -> 
a  =/=  0p )
1615ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  a  =/=  0p )
17 eqid 2438 . . . . . . . . . . . . 13  |-  (deg `  a )  =  (deg
`  a )
1817, 9dgreq0 21707 . . . . . . . . . . . 12  |-  ( a  e.  (Poly `  QQ )  ->  ( a  =  0p  <->  ( (coeff `  a ) `  (deg `  a ) )  =  0 ) )
1918necon3bid 2638 . . . . . . . . . . 11  |-  ( a  e.  (Poly `  QQ )  ->  ( a  =/=  0p  <->  ( (coeff `  a ) `  (deg `  a ) )  =/=  0 ) )
205, 19syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( a  =/=  0p  <->  ( (coeff `  a ) `  (deg `  a ) )  =/=  0 ) )
2116, 20mpbid 210 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  a ) `  (deg `  a ) )  =/=  0 )
22 qreccl 10965 . . . . . . . . 9  |-  ( ( ( (coeff `  a
) `  (deg `  a
) )  e.  QQ  /\  ( (coeff `  a
) `  (deg `  a
) )  =/=  0
)  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  QQ )
2314, 21, 22syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  QQ )
24 plyconst 21649 . . . . . . . 8  |-  ( ( QQ  C_  CC  /\  (
1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  QQ )  -> 
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ ) )
253, 23, 24sylancr 663 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  e.  (Poly `  QQ ) )
26 simpl 457 . . . . . . . 8  |-  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  -> 
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ ) )
27 simpr 461 . . . . . . . 8  |-  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  -> 
a  e.  (Poly `  QQ ) )
28 qaddcl 10961 . . . . . . . . 9  |-  ( ( b  e.  QQ  /\  c  e.  QQ )  ->  ( b  +  c )  e.  QQ )
2928adantl 466 . . . . . . . 8  |-  ( ( ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  +  c )  e.  QQ )
30 qmulcl 10963 . . . . . . . . 9  |-  ( ( b  e.  QQ  /\  c  e.  QQ )  ->  ( b  x.  c
)  e.  QQ )
3130adantl 466 . . . . . . . 8  |-  ( ( ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  x.  c
)  e.  QQ )
3226, 27, 29, 31plymul 21661 . . . . . . 7  |-  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  -> 
( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a )  e.  (Poly `  QQ ) )
3325, 5, 32syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  e.  (Poly `  QQ )
)
349coef3 21675 . . . . . . . . . . 11  |-  ( a  e.  (Poly `  QQ )  ->  (coeff `  a
) : NN0 --> CC )
355, 34syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  a
) : NN0 --> CC )
3635, 13ffvelrnd 5839 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  a ) `  (deg `  a ) )  e.  CC )
3736, 21reccld 10092 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  CC )
3836, 21recne0d 10093 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  =/=  0 )
39 dgrmulc 21713 . . . . . . . 8  |-  ( ( ( 1  /  (
(coeff `  a ) `  (deg `  a )
) )  e.  CC  /\  ( 1  /  (
(coeff `  a ) `  (deg `  a )
) )  =/=  0  /\  a  e.  (Poly `  QQ ) )  -> 
(deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) )  =  (deg `  a
) )
4037, 38, 5, 39syl3anc 1218 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  oF  x.  a
) )  =  (deg
`  a ) )
41 simprl 755 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  a
)  =  (degAA `  A
) )
4240, 41eqtrd 2470 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (deg `  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  oF  x.  a
) )  =  (degAA `  A ) )
43 aacn 21758 . . . . . . . . 9  |-  ( A  e.  AA  ->  A  e.  CC )
4443ad2antrr 725 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  A  e.  CC )
45 ovex 6111 . . . . . . . . . 10  |-  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  _V
46 fnconstg 5593 . . . . . . . . . 10  |-  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  _V  ->  ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  Fn  CC )
4745, 46mp1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  Fn  CC )
48 plyf 21641 . . . . . . . . . 10  |-  ( a  e.  (Poly `  QQ )  ->  a : CC --> CC )
49 ffn 5554 . . . . . . . . . 10  |-  ( a : CC --> CC  ->  a  Fn  CC )
505, 48, 493syl 20 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  a  Fn  CC )
51 cnex 9355 . . . . . . . . . 10  |-  CC  e.  _V
5251a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  CC  e.  _V )
53 inidm 3554 . . . . . . . . 9  |-  ( CC 
i^i  CC )  =  CC
5445fvconst2 5928 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } ) `
 A )  =  ( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) )
5554adantl 466 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  A  e.  CC )  ->  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } ) `
 A )  =  ( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) )
56 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  A  e.  CC )  ->  (
a `  A )  =  0 )
5747, 50, 52, 52, 53, 55, 56ofval 6324 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  A  e.  CC )  ->  (
( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) `  A
)  =  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  0 ) )
5844, 57mpdan 668 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  oF  x.  a
) `  A )  =  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  0 ) )
5937mul01d 9560 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  0 )  =  0 )
6058, 59eqtrd 2470 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  oF  x.  a
) `  A )  =  0 )
61 coemulc 21697 . . . . . . . . 9  |-  ( ( ( 1  /  (
(coeff `  a ) `  (deg `  a )
) )  e.  CC  /\  a  e.  (Poly `  QQ ) )  ->  (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) )  =  ( ( NN0  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  (coeff `  a )
) )
6237, 5, 61syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  (
( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  oF  x.  a
) )  =  ( ( NN0  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  oF  x.  (coeff `  a ) ) )
6362fveq1d 5688 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) ) `  (degAA `  A ) )  =  ( ( ( NN0 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  (coeff `  a
) ) `  (degAA `  A ) ) )
64 dgraacl 29456 . . . . . . . . . 10  |-  ( A  e.  AA  ->  (degAA `  A )  e.  NN )
6564ad2antrr 725 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (degAA `  A
)  e.  NN )
6665nnnn0d 10628 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (degAA `  A
)  e.  NN0 )
67 fnconstg 5593 . . . . . . . . . 10  |-  ( ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) )  e.  _V  ->  ( NN0  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  Fn  NN0 )
6845, 67mp1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( NN0  X. 
{ ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  Fn  NN0 )
69 ffn 5554 . . . . . . . . . 10  |-  ( (coeff `  a ) : NN0 --> CC 
->  (coeff `  a )  Fn  NN0 )
7035, 69syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  (coeff `  a
)  Fn  NN0 )
71 nn0ex 10577 . . . . . . . . . 10  |-  NN0  e.  _V
7271a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  NN0  e.  _V )
73 inidm 3554 . . . . . . . . 9  |-  ( NN0 
i^i  NN0 )  =  NN0
7445fvconst2 5928 . . . . . . . . . 10  |-  ( (degAA `  A )  e.  NN0  ->  ( ( NN0  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } ) `  (degAA `  A
) )  =  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) )
7574adantl 466 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  ( ( NN0  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } ) `  (degAA `  A
) )  =  ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) )
76 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  (deg `  a )  =  (degAA `  A ) )
7776eqcomd 2443 . . . . . . . . . 10  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  (degAA `  A )  =  (deg `  a )
)
7877fveq2d 5690 . . . . . . . . 9  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  ( (coeff `  a
) `  (degAA `  A
) )  =  ( (coeff `  a ) `  (deg `  a )
) )
7968, 70, 72, 72, 73, 75, 78ofval 6324 . . . . . . . 8  |-  ( ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  { 0p } ) )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  /\  (degAA `  A
)  e.  NN0 )  ->  ( ( ( NN0 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  (coeff `  a
) ) `  (degAA `  A ) )  =  ( ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) )  x.  ( (coeff `  a
) `  (deg `  a
) ) ) )
8066, 79mpdan 668 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
( NN0  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  (coeff `  a
) ) `  (degAA `  A ) )  =  ( ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) )  x.  ( (coeff `  a
) `  (deg `  a
) ) ) )
8136, 21recid2d 10095 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (
1  /  ( (coeff `  a ) `  (deg `  a ) ) )  x.  ( (coeff `  a ) `  (deg `  a ) ) )  =  1 )
8263, 80, 813eqtrd 2474 . . . . . 6  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) ) `  (degAA `  A ) )  =  1 )
83 fveq2 5686 . . . . . . . . 9  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
(deg `  p )  =  (deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) ) )
8483eqeq1d 2446 . . . . . . . 8  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
( (deg `  p
)  =  (degAA `  A
)  <->  (deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) )  =  (degAA `  A ) ) )
85 fveq1 5685 . . . . . . . . 9  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
( p `  A
)  =  ( ( ( CC  X.  {
( 1  /  (
(coeff `  a ) `  (deg `  a )
) ) } )  oF  x.  a
) `  A )
)
8685eqeq1d 2446 . . . . . . . 8  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
( ( p `  A )  =  0  <-> 
( ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) `  A )  =  0 ) )
87 fveq2 5686 . . . . . . . . . 10  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
(coeff `  p )  =  (coeff `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) ) )
8887fveq1d 5688 . . . . . . . . 9  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
( (coeff `  p
) `  (degAA `  A
) )  =  ( (coeff `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) ) `
 (degAA `  A ) ) )
8988eqeq1d 2446 . . . . . . . 8  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
( ( (coeff `  p ) `  (degAA `  A ) )  =  1  <->  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) ) `  (degAA `  A ) )  =  1 ) )
9084, 86, 893anbi123d 1289 . . . . . . 7  |-  ( p  =  ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a )  -> 
( ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  <->  ( (deg `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) )  =  (degAA `  A )  /\  ( ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) `  A )  =  0  /\  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) ) `  (degAA `  A ) )  =  1 ) ) )
9190rspcev 3068 . . . . . 6  |-  ( ( ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a )  e.  (Poly `  QQ )  /\  (
(deg `  ( ( CC  X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) )  =  (degAA `  A )  /\  ( ( ( CC 
X.  { ( 1  /  ( (coeff `  a ) `  (deg `  a ) ) ) } )  oF  x.  a ) `  A )  =  0  /\  ( (coeff `  ( ( CC  X.  { ( 1  / 
( (coeff `  a
) `  (deg `  a
) ) ) } )  oF  x.  a ) ) `  (degAA `  A ) )  =  1 ) )  ->  E. p  e.  (Poly `  QQ ) ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 ) )
9233, 42, 60, 82, 91syl13anc 1220 . . . . 5  |-  ( ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 ) )  ->  E. p  e.  (Poly `  QQ )
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 ) )
9392ex 434 . . . 4  |-  ( ( A  e.  AA  /\  a  e.  ( (Poly `  QQ )  \  {
0p } ) )  ->  ( (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0 )  ->  E. p  e.  (Poly `  QQ ) ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 ) ) )
9493rexlimdva 2836 . . 3  |-  ( A  e.  AA  ->  ( E. a  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  a )  =  (degAA `  A )  /\  (
a `  A )  =  0 )  ->  E. p  e.  (Poly `  QQ ) ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 ) ) )
952, 94mpd 15 . 2  |-  ( A  e.  AA  ->  E. p  e.  (Poly `  QQ )
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 ) )
96 simp2 989 . . . . . . . . . . 11  |-  ( ( (deg `  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 )  ->  ( p `  A )  =  0 )
97 simp2 989 . . . . . . . . . . 11  |-  ( ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 )  ->  ( a `  A )  =  0 )
9896, 97anim12i 566 . . . . . . . . . 10  |-  ( ( ( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  (
( p `  A
)  =  0  /\  ( a `  A
)  =  0 ) )
99 plyf 21641 . . . . . . . . . . . . . . . 16  |-  ( p  e.  (Poly `  QQ )  ->  p : CC --> CC )
100 ffn 5554 . . . . . . . . . . . . . . . 16  |-  ( p : CC --> CC  ->  p  Fn  CC )
10199, 100syl 16 . . . . . . . . . . . . . . 15  |-  ( p  e.  (Poly `  QQ )  ->  p  Fn  CC )
102101ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  p  Fn  CC )
10348, 49syl 16 . . . . . . . . . . . . . . 15  |-  ( a  e.  (Poly `  QQ )  ->  a  Fn  CC )
104103ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  a  Fn  CC )
10551a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  CC  e.  _V )
106 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  CC )  ->  (
p `  A )  =  0 )
107 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  CC )  ->  (
a `  A )  =  0 )
108102, 104, 105, 105, 53, 106, 107ofval 6324 . . . . . . . . . . . . 13  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  CC )  ->  (
( p  oF  -  a ) `  A )  =  ( 0  -  0 ) )
10943, 108sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  AA )  ->  (
( p  oF  -  a ) `  A )  =  ( 0  -  0 ) )
110 0m0e0 10423 . . . . . . . . . . . 12  |-  ( 0  -  0 )  =  0
111109, 110syl6eq 2486 . . . . . . . . . . 11  |-  ( ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( p `  A )  =  0  /\  ( a `  A )  =  0 ) )  /\  A  e.  AA )  ->  (
( p  oF  -  a ) `  A )  =  0 )
112111ex 434 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
p `  A )  =  0  /\  (
a `  A )  =  0 ) )  ->  ( A  e.  AA  ->  ( (
p  oF  -  a ) `  A
)  =  0 ) )
11398, 112sylan2 474 . . . . . . . . 9  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (
(deg `  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( A  e.  AA  ->  ( ( p  oF  -  a ) `
 A )  =  0 ) )
114113com12 31 . . . . . . . 8  |-  ( A  e.  AA  ->  (
( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ ) )  /\  ( ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( p  oF  -  a ) `
 A )  =  0 ) )
115114impl 620 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( p  oF  -  a ) `
 A )  =  0 )
116 simpll 753 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  ->  A  e.  AA )
117 simpl 457 . . . . . . . . . 10  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  p  e.  (Poly `  QQ ) )
118 simpr 461 . . . . . . . . . 10  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  a  e.  (Poly `  QQ ) )
11928adantl 466 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  +  c )  e.  QQ )
12030adantl 466 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( b  e.  QQ  /\  c  e.  QQ ) )  -> 
( b  x.  c
)  e.  QQ )
121 1z 10668 . . . . . . . . . . . 12  |-  1  e.  ZZ
122 zq 10951 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
123 qnegcl 10962 . . . . . . . . . . . 12  |-  ( 1  e.  QQ  ->  -u 1  e.  QQ )
124121, 122, 123mp2b 10 . . . . . . . . . . 11  |-  -u 1  e.  QQ
125124a1i 11 . . . . . . . . . 10  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  -u 1  e.  QQ )
126117, 118, 119, 120, 125plysub 21662 . . . . . . . . 9  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  ( p  oF  -  a
)  e.  (Poly `  QQ ) )
127126ad2antlr 726 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( p  oF  -  a )  e.  (Poly `  QQ )
)
128 simplrl 759 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  ->  p  e.  (Poly `  QQ ) )
129 simplrr 760 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
a  e.  (Poly `  QQ ) )
130 simprr1 1036 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  a )  =  (degAA `  A ) )
131 simprl1 1033 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  p )  =  (degAA `  A ) )
132130, 131eqtr4d 2473 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  a )  =  (deg `  p )
)
13364ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(degAA `
 A )  e.  NN )
134131, 133eqeltrd 2512 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  p )  e.  NN )
135 simprl3 1035 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  p
) `  (degAA `  A
) )  =  1 )
136131fveq2d 5690 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  p
) `  (deg `  p
) )  =  ( (coeff `  p ) `  (degAA `  A ) ) )
137131fveq2d 5690 . . . . . . . . . . . 12  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  a
) `  (deg `  p
) )  =  ( (coeff `  a ) `  (degAA `  A ) ) )
138 simprr3 1038 . . . . . . . . . . . 12  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  a
) `  (degAA `  A
) )  =  1 )
139137, 138eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  a
) `  (deg `  p
) )  =  1 )
140135, 136, 1393eqtr4d 2480 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( (coeff `  p
) `  (deg `  p
) )  =  ( (coeff `  a ) `  (deg `  p )
) )
141 eqid 2438 . . . . . . . . . . 11  |-  (deg `  p )  =  (deg
`  p )
142141dgrsub2 29444 . . . . . . . . . 10  |-  ( ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  /\  ( (deg `  a )  =  (deg
`  p )  /\  (deg `  p )  e.  NN  /\  ( (coeff `  p ) `  (deg `  p ) )  =  ( (coeff `  a
) `  (deg `  p
) ) ) )  ->  (deg `  (
p  oF  -  a ) )  < 
(deg `  p )
)
143128, 129, 132, 134, 140, 142syl23anc 1225 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  ( p  oF  -  a
) )  <  (deg `  p ) )
144143, 131breqtrd 4311 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
(deg `  ( p  oF  -  a
) )  <  (degAA `  A ) )
145 dgraa0p 29459 . . . . . . . 8  |-  ( ( A  e.  AA  /\  ( p  oF  -  a )  e.  (Poly `  QQ )  /\  (deg `  ( p  oF  -  a
) )  <  (degAA `  A ) )  -> 
( ( ( p  oF  -  a
) `  A )  =  0  <->  ( p  oF  -  a
)  =  0p ) )
146116, 127, 144, 145syl3anc 1218 . . . . . . 7  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( ( p  oF  -  a
) `  A )  =  0  <->  ( p  oF  -  a
)  =  0p ) )
147115, 146mpbid 210 . . . . . 6  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( p  oF  -  a )  =  0p )
148 df-0p 21123 . . . . . 6  |-  0p  =  ( CC  X.  { 0 } )
149147, 148syl6eq 2486 . . . . 5  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( p  oF  -  a )  =  ( CC  X.  {
0 } ) )
150 ofsubeq0 10311 . . . . . . . 8  |-  ( ( CC  e.  _V  /\  p : CC --> CC  /\  a : CC --> CC )  ->  ( ( p  oF  -  a
)  =  ( CC 
X.  { 0 } )  <->  p  =  a
) )
15151, 150mp3an1 1301 . . . . . . 7  |-  ( ( p : CC --> CC  /\  a : CC --> CC )  ->  ( ( p  oF  -  a
)  =  ( CC 
X.  { 0 } )  <->  p  =  a
) )
15299, 48, 151syl2an 477 . . . . . 6  |-  ( ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
)  ->  ( (
p  oF  -  a )  =  ( CC  X.  { 0 } )  <->  p  =  a ) )
153152ad2antlr 726 . . . . 5  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  -> 
( ( p  oF  -  a )  =  ( CC  X.  { 0 } )  <-> 
p  =  a ) )
154149, 153mpbid 210 . . . 4  |-  ( ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  /\  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) ) )  ->  p  =  a )
155154ex 434 . . 3  |-  ( ( A  e.  AA  /\  ( p  e.  (Poly `  QQ )  /\  a  e.  (Poly `  QQ )
) )  ->  (
( ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  ( (deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  p  =  a ) )
156155ralrimivva 2803 . 2  |-  ( A  e.  AA  ->  A. p  e.  (Poly `  QQ ) A. a  e.  (Poly `  QQ ) ( ( ( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  (
(deg `  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  p  =  a ) )
157 fveq2 5686 . . . . 5  |-  ( p  =  a  ->  (deg `  p )  =  (deg
`  a ) )
158157eqeq1d 2446 . . . 4  |-  ( p  =  a  ->  (
(deg `  p )  =  (degAA `  A )  <->  (deg `  a
)  =  (degAA `  A
) ) )
159 fveq1 5685 . . . . 5  |-  ( p  =  a  ->  (
p `  A )  =  ( a `  A ) )
160159eqeq1d 2446 . . . 4  |-  ( p  =  a  ->  (
( p `  A
)  =  0  <->  (
a `  A )  =  0 ) )
161 fveq2 5686 . . . . . 6  |-  ( p  =  a  ->  (coeff `  p )  =  (coeff `  a ) )
162161fveq1d 5688 . . . . 5  |-  ( p  =  a  ->  (
(coeff `  p ) `  (degAA `  A ) )  =  ( (coeff `  a ) `  (degAA `  A ) ) )
163162eqeq1d 2446 . . . 4  |-  ( p  =  a  ->  (
( (coeff `  p
) `  (degAA `  A
) )  =  1  <-> 
( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )
164158, 160, 1633anbi123d 1289 . . 3  |-  ( p  =  a  ->  (
( (deg `  p
)  =  (degAA `  A
)  /\  ( p `  A )  =  0  /\  ( (coeff `  p ) `  (degAA `  A ) )  =  1 )  <->  ( (deg `  a )  =  (degAA `  A )  /\  (
a `  A )  =  0  /\  (
(coeff `  a ) `  (degAA `  A ) )  =  1 ) ) )
165164reu4 3148 . 2  |-  ( E! p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  <->  ( E. p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 )  /\  A. p  e.  (Poly `  QQ ) A. a  e.  (Poly `  QQ )
( ( ( (deg
`  p )  =  (degAA `  A )  /\  ( p `  A
)  =  0  /\  ( (coeff `  p
) `  (degAA `  A
) )  =  1 )  /\  ( (deg
`  a )  =  (degAA `  A )  /\  ( a `  A
)  =  0  /\  ( (coeff `  a
) `  (degAA `  A
) )  =  1 ) )  ->  p  =  a ) ) )
16695, 156, 165sylanbrc 664 1  |-  ( A  e.  AA  ->  E! p  e.  (Poly `  QQ ) ( (deg `  p )  =  (degAA `  A )  /\  (
p `  A )  =  0  /\  (
(coeff `  p ) `  (degAA `  A ) )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   E!wreu 2712   _Vcvv 2967    \ cdif 3320    C_ wss 3323   {csn 3872   class class class wbr 4287    X. cxp 4833    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086    oFcof 6313   CCcc 9272   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    - cmin 9587   -ucneg 9588    / cdiv 9985   NNcn 10314   NN0cn0 10571   ZZcz 10638   QQcq 10945   0pc0p 21122  Polycply 21627  coeffccoe 21629  degcdgr 21630   AAcaa 21755  degAAcdgraa 29450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-rlim 12959  df-sum 13156  df-0p 21123  df-ply 21631  df-coe 21633  df-dgr 21634  df-aa 21756  df-dgraa 29452
This theorem is referenced by:  mpaalem  29462
  Copyright terms: Public domain W3C validator