MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an1i Structured version   Unicode version

Theorem mp3an1i 1307
Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
mp3an1i.1  |-  ps
mp3an1i.2  |-  ( ph  ->  ( ( ps  /\  ch  /\  th )  ->  ta ) )
Assertion
Ref Expression
mp3an1i  |-  ( ph  ->  ( ( ch  /\  th )  ->  ta )
)

Proof of Theorem mp3an1i
StepHypRef Expression
1 mp3an1i.1 . . 3  |-  ps
2 mp3an1i.2 . . . 4  |-  ( ph  ->  ( ( ps  /\  ch  /\  th )  ->  ta ) )
32com12 31 . . 3  |-  ( ( ps  /\  ch  /\  th )  ->  ( ph  ->  ta ) )
41, 3mp3an1 1301 . 2  |-  ( ( ch  /\  th )  ->  ( ph  ->  ta ) )
54com12 31 1  |-  ( ph  ->  ( ( ch  /\  th )  ->  ta )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator