Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  morimvOLD Structured version   Unicode version

Theorem morimvOLD 2331
 Description: Obsolete proof of morimOLD 2330 as of 22-Dec-2018. (Contributed by NM, 28-Jul-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
morimvOLD
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem morimvOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . . . . . 7
21a1i 11 . . . . . 6
32imim1d 75 . . . . 5
43alimdv 1676 . . . 4
54eximdv 1677 . . 3
6 nfv 1674 . . . 4
76mo2 2274 . . 3
8 nfv 1674 . . . 4
98mo2 2274 . . 3
105, 7, 93imtr4g 270 . 2
1110com12 31 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1368  wex 1587  wmo 2263 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591  df-eu 2266  df-mo 2267 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator