MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopni2 Structured version   Unicode version

Theorem mopni2 21439
Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
mopni2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  A
)
Distinct variable groups:    x, A    x, D    x, J    x, P    x, X

Proof of Theorem mopni2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . 3  |-  J  =  ( MetOpen `  D )
21mopni 21438 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  E. y  e.  ran  ( ball `  D
) ( P  e.  y  /\  y  C_  A ) )
31mopnss 21392 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J
)  ->  A  C_  X
)
43sselda 3470 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J )  /\  P  e.  A )  ->  P  e.  X )
5 blssex 21373 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. y  e.  ran  ( ball `  D ) ( P  e.  y  /\  y  C_  A )  <->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  A
) )
65adantlr 719 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J )  /\  P  e.  X )  ->  ( E. y  e.  ran  ( ball `  D )
( P  e.  y  /\  y  C_  A
)  <->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  A ) )
74, 6syldan 472 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  e.  J )  /\  P  e.  A )  ->  ( E. y  e.  ran  ( ball `  D )
( P  e.  y  /\  y  C_  A
)  <->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  A ) )
873impa 1200 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  ( E. y  e.  ran  ( ball `  D ) ( P  e.  y  /\  y  C_  A )  <->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  A
) )
92, 8mpbid 213 1  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A
)  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   E.wrex 2783    C_ wss 3442   ran crn 4855   ` cfv 5601  (class class class)co 6305   RR+crp 11302   *Metcxmt 18890   ballcbl 18892   MetOpencmopn 18895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-topgen 15301  df-psmet 18897  df-xmet 18898  df-bl 18900  df-mopn 18901  df-top 19852  df-bases 19853  df-topon 19854
This theorem is referenced by:  mopni3  21440  neibl  21447  met1stc  21467  met2ndci  21468  prdsxmslem2  21475  metcnp3  21486  xrsmopn  21741  iccntr  21750  icccmplem3  21753  reconnlem2  21756  opnreen  21760  metdseq0  21782  cnllycmp  21880  nmhmcn  22027  lmmbr  22121  cfilfcls  22137  iscmet3lem2  22155  bcthlem5  22189  opnmbllem  22436  ellimc3  22711  lhop  22845  dvcnvre  22848  xrlimcnp  23759  lgamucov  23828  ubthlem1  26357  cnllyscon  29756  ptrecube  31647  opnmbllem0  31683  heiborlem8  31857
  Copyright terms: Public domain W3C validator