MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moop2 Structured version   Unicode version

Theorem moop2 4751
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1  |-  B  e. 
_V
Assertion
Ref Expression
moop2  |-  E* x  A  =  <. B ,  x >.
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem moop2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2484 . . . 4  |-  ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >.
)  ->  <. B ,  x >.  =  <. [_ y  /  x ]_ B , 
y >. )
2 moop2.1 . . . . . 6  |-  B  e. 
_V
3 vex 3112 . . . . . 6  |-  x  e. 
_V
42, 3opth 4730 . . . . 5  |-  ( <. B ,  x >.  = 
<. [_ y  /  x ]_ B ,  y >.  <->  ( B  =  [_ y  /  x ]_ B  /\  x  =  y )
)
54simprbi 464 . . . 4  |-  ( <. B ,  x >.  = 
<. [_ y  /  x ]_ B ,  y >.  ->  x  =  y )
61, 5syl 16 . . 3  |-  ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >.
)  ->  x  =  y )
76gen2 1620 . 2  |-  A. x A. y ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >. )  ->  x  =  y )
8 nfcsb1v 3446 . . . . 5  |-  F/_ x [_ y  /  x ]_ B
9 nfcv 2619 . . . . 5  |-  F/_ x
y
108, 9nfop 4235 . . . 4  |-  F/_ x <. [_ y  /  x ]_ B ,  y >.
1110nfeq2 2636 . . 3  |-  F/ x  A  =  <. [_ y  /  x ]_ B , 
y >.
12 csbeq1a 3439 . . . . 5  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
13 id 22 . . . . 5  |-  ( x  =  y  ->  x  =  y )
1412, 13opeq12d 4227 . . . 4  |-  ( x  =  y  ->  <. B ,  x >.  =  <. [_ y  /  x ]_ B , 
y >. )
1514eqeq2d 2471 . . 3  |-  ( x  =  y  ->  ( A  =  <. B ,  x >. 
<->  A  =  <. [_ y  /  x ]_ B , 
y >. ) )
1611, 15mo4f 2337 . 2  |-  ( E* x  A  =  <. B ,  x >.  <->  A. x A. y ( ( A  =  <. B ,  x >.  /\  A  =  <. [_ y  /  x ]_ B ,  y >. )  ->  x  =  y ) )
177, 16mpbir 209 1  |-  E* x  A  =  <. B ,  x >.
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1393    = wceq 1395    e. wcel 1819   E*wmo 2284   _Vcvv 3109   [_csb 3430   <.cop 4038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039
This theorem is referenced by:  euop2  4756
  Copyright terms: Public domain W3C validator