MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monoord Structured version   Unicode version

Theorem monoord 12186
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
monoord.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
monoord.3  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
Assertion
Ref Expression
monoord  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem monoord
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 11751 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 17 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 eleq1 2488 . . . . . 6  |-  ( x  =  M  ->  (
x  e.  ( M ... N )  <->  M  e.  ( M ... N ) ) )
5 fveq2 5818 . . . . . . 7  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
65breq2d 4371 . . . . . 6  |-  ( x  =  M  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  M )
) )
74, 6imbi12d 321 . . . . 5  |-  ( x  =  M  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
87imbi2d 317 . . . 4  |-  ( x  =  M  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) ) ) )
9 eleq1 2488 . . . . . 6  |-  ( x  =  n  ->  (
x  e.  ( M ... N )  <->  n  e.  ( M ... N ) ) )
10 fveq2 5818 . . . . . . 7  |-  ( x  =  n  ->  ( F `  x )  =  ( F `  n ) )
1110breq2d 4371 . . . . . 6  |-  ( x  =  n  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  n )
) )
129, 11imbi12d 321 . . . . 5  |-  ( x  =  n  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) ) )
1312imbi2d 317 . . . 4  |-  ( x  =  n  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( n  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) ) )
14 eleq1 2488 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
x  e.  ( M ... N )  <->  ( n  +  1 )  e.  ( M ... N
) ) )
15 fveq2 5818 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( F `  x )  =  ( F `  ( n  +  1
) ) )
1615breq2d 4371 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
1714, 16imbi12d 321 . . . . 5  |-  ( x  =  ( n  + 
1 )  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
1817imbi2d 317 . . . 4  |-  ( x  =  ( n  + 
1 )  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
19 eleq1 2488 . . . . . 6  |-  ( x  =  N  ->  (
x  e.  ( M ... N )  <->  N  e.  ( M ... N ) ) )
20 fveq2 5818 . . . . . . 7  |-  ( x  =  N  ->  ( F `  x )  =  ( F `  N ) )
2120breq2d 4371 . . . . . 6  |-  ( x  =  N  ->  (
( F `  M
)  <_  ( F `  x )  <->  ( F `  M )  <_  ( F `  N )
) )
2219, 21imbi12d 321 . . . . 5  |-  ( x  =  N  ->  (
( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x )
)  <->  ( N  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  N )
) ) )
2322imbi2d 317 . . . 4  |-  ( x  =  N  ->  (
( ph  ->  ( x  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  x
) ) )  <->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) ) )
24 eluzfz1 11750 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
251, 24syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ( M ... N ) )
26 monoord.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
2726ralrimiva 2773 . . . . . . . 8  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  e.  RR )
28 fveq2 5818 . . . . . . . . . 10  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
2928eleq1d 2484 . . . . . . . . 9  |-  ( k  =  M  ->  (
( F `  k
)  e.  RR  <->  ( F `  M )  e.  RR ) )
3029rspcv 3114 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  M )  e.  RR ) )
3125, 27, 30sylc 62 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  RR )
3231leidd 10124 . . . . . 6  |-  ( ph  ->  ( F `  M
)  <_  ( F `  M ) )
3332a1d 26 . . . . 5  |-  ( ph  ->  ( M  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  M )
) )
3433a1i 11 . . . 4  |-  ( M  e.  ZZ  ->  ( ph  ->  ( M  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  M )
) ) )
35 simprl 762 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( ZZ>= `  M )
)
36 simprr 764 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( n  +  1 )  e.  ( M ... N
) )
37 peano2fzr 11756 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= `  M )  /\  (
n  +  1 )  e.  ( M ... N ) )  ->  n  e.  ( M ... N ) )
3835, 36, 37syl2anc 665 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... N ) )
3938expr 618 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  n  e.  ( M ... N
) ) )
4039imim1d 78 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  n )
) ) )
41 eluzelz 11112 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
4235, 41syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ZZ )
43 elfzuz3 11741 . . . . . . . . . . . . . 14  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
4436, 43syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  N  e.  ( ZZ>= `  ( n  +  1 ) ) )
45 eluzp1m1 11126 . . . . . . . . . . . . 13  |-  ( ( n  e.  ZZ  /\  N  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  n ) )
4642, 44, 45syl2anc 665 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  n )
)
47 elfzuzb 11738 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... ( N  -  1
) )  <->  ( n  e.  ( ZZ>= `  M )  /\  ( N  -  1 )  e.  ( ZZ>= `  n ) ) )
4835, 46, 47sylanbrc 668 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  n  e.  ( M ... ( N  -  1 ) ) )
49 monoord.3 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
5049ralrimiva 2773 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k
)  <_  ( F `  ( k  +  1 ) ) )
5150adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... ( N  -  1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) ) )
52 fveq2 5818 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
53 oveq1 6249 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  (
k  +  1 )  =  ( n  + 
1 ) )
5453fveq2d 5822 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( n  +  1
) ) )
5552, 54breq12d 4372 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( F `  k
)  <_  ( F `  ( k  +  1 ) )  <->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) ) )
5655rspcv 3114 . . . . . . . . . . 11  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  ( A. k  e.  ( M ... ( N  - 
1 ) ) ( F `  k )  <_  ( F `  ( k  +  1 ) )  ->  ( F `  n )  <_  ( F `  (
n  +  1 ) ) ) )
5748, 51, 56sylc 62 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )
5831adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  M )  e.  RR )
5927adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  A. k  e.  ( M ... N
) ( F `  k )  e.  RR )
6052eleq1d 2484 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
6160rspcv 3114 . . . . . . . . . . . 12  |-  ( n  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  n )  e.  RR ) )
6238, 59, 61sylc 62 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  n )  e.  RR )
63 fveq2 5818 . . . . . . . . . . . . . 14  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
6463eleq1d 2484 . . . . . . . . . . . . 13  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( n  +  1 ) )  e.  RR ) )
6564rspcv 3114 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) ( F `  k )  e.  RR  ->  ( F `  ( n  +  1 ) )  e.  RR ) )
6636, 59, 65sylc 62 . . . . . . . . . . 11  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
67 letr 9671 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  n )  e.  RR  /\  ( F `  ( n  +  1 ) )  e.  RR )  -> 
( ( ( F `
 M )  <_ 
( F `  n
)  /\  ( F `  n )  <_  ( F `  ( n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
6858, 62, 66, 67syl3anc 1264 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( (
( F `  M
)  <_  ( F `  n )  /\  ( F `  n )  <_  ( F `  (
n  +  1 ) ) )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) )
6957, 68mpan2d 678 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( ZZ>= `  M )  /\  ( n  +  1 )  e.  ( M ... N ) ) )  ->  ( ( F `  M )  <_  ( F `  n
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) )
7069expr 618 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  (
( F `  M
)  <_  ( F `  n )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) )
7170a2d 29 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
( n  +  1 )  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
7240, 71syld 45 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( M ... N )  -> 
( F `  M
)  <_  ( F `  n ) )  -> 
( ( n  + 
1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) )
7372expcom 436 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
)  ->  ( (
n  +  1 )  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  (
n  +  1 ) ) ) ) ) )
7473a2d 29 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( n  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  n )
) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( M ... N
)  ->  ( F `  M )  <_  ( F `  ( n  +  1 ) ) ) ) ) )
758, 13, 18, 23, 34, 74uzind4 11161 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) ) )
761, 75mpcom 37 . 2  |-  ( ph  ->  ( N  e.  ( M ... N )  ->  ( F `  M )  <_  ( F `  N )
) )
773, 76mpd 15 1  |-  ( ph  ->  ( F `  M
)  <_  ( F `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2708   class class class wbr 4359   ` cfv 5537  (class class class)co 6242   RRcr 9482   1c1 9484    + caddc 9486    <_ cle 9620    - cmin 9804   ZZcz 10881   ZZ>=cuz 11103   ...cfz 11728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-reu 2715  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-riota 6204  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-om 6644  df-1st 6744  df-2nd 6745  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-er 7311  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9806  df-neg 9807  df-nn 10554  df-n0 10814  df-z 10882  df-uz 11104  df-fz 11729
This theorem is referenced by:  monoord2  12187  sermono  12188  climub  13661  isercolllem1  13664  climsup  13669  dvfsumlem3  22915  emcllem7  23862  lmdvg  28704  monoords  37405  iblspltprt  37727  itgspltprt  37733  fourierdlem11  37857  fourierdlem12  37858  fourierdlem15  37861  fourierdlem50  37897  fourierdlem79  37926
  Copyright terms: Public domain W3C validator