MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Structured version   Unicode version

Theorem monfval 15147
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  ( Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
Assertion
Ref Expression
monfval  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Distinct variable groups:    f, g, x, y, z, B    ph, f,
g, x, y, z    C, f, g, x, y, z    f, H, g, x, y, z    .x. , f,
g, x, y, z   
f, M
Allowed substitution hints:    M( x, y, z, g)

Proof of Theorem monfval
Dummy variables  b 
c  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2  |-  M  =  (Mono `  C )
2 ismon.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvex 5882 . . . . . 6  |-  ( Base `  c )  e.  _V
43a1i 11 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
5 fveq2 5872 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
6 ismon.b . . . . . 6  |-  B  =  ( Base `  C
)
75, 6syl6eqr 2516 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
8 fvex 5882 . . . . . . 7  |-  ( Hom  `  c )  e.  _V
98a1i 11 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  e.  _V )
10 simpl 457 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
1110fveq2d 5876 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  ( Hom  `  C ) )
12 ismon.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
1311, 12syl6eqr 2516 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  H )
14 simplr 755 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  b  =  B )
15 simpr 461 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  h  =  H )
1615oveqd 6313 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x h y )  =  ( x H y ) )
1715oveqd 6313 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
z h x )  =  ( z H x ) )
18 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  c  =  C )
1918fveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  (comp `  C ) )
20 ismon.o . . . . . . . . . . . . . . 15  |-  .x.  =  (comp `  C )
2119, 20syl6eqr 2516 . . . . . . . . . . . . . 14  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  .x.  )
2221oveqd 6313 . . . . . . . . . . . . 13  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( <. z ,  x >. (comp `  c ) y )  =  ( <. z ,  x >.  .x.  y ) )
2322oveqd 6313 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
f ( <. z ,  x >. (comp `  c
) y ) g )  =  ( f ( <. z ,  x >.  .x.  y ) g ) )
2417, 23mpteq12dv 4535 . . . . . . . . . . 11  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) )  =  ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) )
2524cnveqd 5188 . . . . . . . . . 10  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) )  =  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) )
2625funeqd 5615 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2714, 26raleqbidv 3068 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2816, 27rabeqbidv 3104 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) ) }  =  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } )
2914, 14, 28mpt2eq123dv 6358 . . . . . 6  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  | 
A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c )
y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
309, 13, 29csbied2 3458 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  ->  [_ ( Hom  `  c
)  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
314, 7, 30csbied2 3458 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ [_ ( Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b 
|->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
32 df-mon 15145 . . . 4  |- Mono  =  ( c  e.  Cat  |->  [_ ( Base `  c )  /  b ]_ [_ ( Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } ) )
33 fvex 5882 . . . . . 6  |-  ( Base `  C )  e.  _V
346, 33eqeltri 2541 . . . . 5  |-  B  e. 
_V
3534, 34mpt2ex 6876 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } )  e. 
_V
3631, 32, 35fvmpt 5956 . . 3  |-  ( C  e.  Cat  ->  (Mono `  C )  =  ( x  e.  B , 
y  e.  B  |->  { f  e.  ( x H y )  | 
A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) } ) )
372, 36syl 16 . 2  |-  ( ph  ->  (Mono `  C )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
381, 37syl5eq 2510 1  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   _Vcvv 3109   [_csb 3430   <.cop 4038    |-> cmpt 4515   `'ccnv 5007   Fun wfun 5588   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   Basecbs 14643   Hom chom 14722  compcco 14723   Catccat 15080  Monocmon 15143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-mon 15145
This theorem is referenced by:  ismon  15148  monpropd  15152
  Copyright terms: Public domain W3C validator