MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Structured version   Unicode version

Theorem monfval 14670
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b  |-  B  =  ( Base `  C
)
ismon.h  |-  H  =  ( Hom  `  C
)
ismon.o  |-  .x.  =  (comp `  C )
ismon.s  |-  M  =  (Mono `  C )
ismon.c  |-  ( ph  ->  C  e.  Cat )
Assertion
Ref Expression
monfval  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Distinct variable groups:    f, g, x, y, z, B    ph, f,
g, x, y, z    C, f, g, x, y, z    f, H, g, x, y, z    .x. , f,
g, x, y, z   
f, M
Allowed substitution hints:    M( x, y, z, g)

Proof of Theorem monfval
Dummy variables  b 
c  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2  |-  M  =  (Mono `  C )
2 ismon.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvex 5700 . . . . . 6  |-  ( Base `  c )  e.  _V
43a1i 11 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
5 fveq2 5690 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
6 ismon.b . . . . . 6  |-  B  =  ( Base `  C
)
75, 6syl6eqr 2492 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
8 fvex 5700 . . . . . . 7  |-  ( Hom  `  c )  e.  _V
98a1i 11 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  e.  _V )
10 simpl 457 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
1110fveq2d 5694 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  ( Hom  `  C ) )
12 ismon.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
1311, 12syl6eqr 2492 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  ( Hom  `  c
)  =  H )
14 simplr 754 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  b  =  B )
15 simpr 461 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  h  =  H )
1615oveqd 6107 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x h y )  =  ( x H y ) )
1715oveqd 6107 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
z h x )  =  ( z H x ) )
18 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  c  =  C )
1918fveq2d 5694 . . . . . . . . . . . . . . 15  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  (comp `  C ) )
20 ismon.o . . . . . . . . . . . . . . 15  |-  .x.  =  (comp `  C )
2119, 20syl6eqr 2492 . . . . . . . . . . . . . 14  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  .x.  )
2221oveqd 6107 . . . . . . . . . . . . 13  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( <. z ,  x >. (comp `  c ) y )  =  ( <. z ,  x >.  .x.  y ) )
2322oveqd 6107 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
f ( <. z ,  x >. (comp `  c
) y ) g )  =  ( f ( <. z ,  x >.  .x.  y ) g ) )
2417, 23mpteq12dv 4369 . . . . . . . . . . 11  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) )  =  ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) )
2524cnveqd 5014 . . . . . . . . . 10  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) )  =  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) )
2625funeqd 5438 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2714, 26raleqbidv 2930 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  ( A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f (
<. z ,  x >. (comp `  c ) y ) g ) )  <->  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) ) )
2816, 27rabeqbidv 2966 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x ) 
|->  ( f ( <.
z ,  x >. (comp `  c ) y ) g ) ) }  =  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } )
2914, 14, 28mpt2eq123dv 6147 . . . . . 6  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (
x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  | 
A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c )
y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
309, 13, 29csbied2 3314 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  ->  [_ ( Hom  `  c
)  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
314, 7, 30csbied2 3314 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ [_ ( Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b 
|->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
32 df-mon 14668 . . . 4  |- Mono  =  ( c  e.  Cat  |->  [_ ( Base `  c )  /  b ]_ [_ ( Hom  `  c )  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } ) )
33 fvex 5700 . . . . . 6  |-  ( Base `  C )  e.  _V
346, 33eqeltri 2512 . . . . 5  |-  B  e. 
_V
3534, 34mpt2ex 6649 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } )  e. 
_V
3631, 32, 35fvmpt 5773 . . 3  |-  ( C  e.  Cat  ->  (Mono `  C )  =  ( x  e.  B , 
y  e.  B  |->  { f  e.  ( x H y )  | 
A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f (
<. z ,  x >.  .x.  y ) g ) ) } ) )
372, 36syl 16 . 2  |-  ( ph  ->  (Mono `  C )  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x )  |->  ( f ( <. z ,  x >.  .x.  y ) g ) ) } ) )
381, 37syl5eq 2486 1  |-  ( ph  ->  M  =  ( x  e.  B ,  y  e.  B  |->  { f  e.  ( x H y )  |  A. z  e.  B  Fun  `' ( g  e.  ( z H x ) 
|->  ( f ( <.
z ,  x >.  .x.  y ) g ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   {crab 2718   _Vcvv 2971   [_csb 3287   <.cop 3882    e. cmpt 4349   `'ccnv 4838   Fun wfun 5411   ` cfv 5417  (class class class)co 6090    e. cmpt2 6092   Basecbs 14173   Hom chom 14248  compcco 14249   Catccat 14601  Monocmon 14666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-mon 14668
This theorem is referenced by:  ismon  14671  monpropd  14675
  Copyright terms: Public domain W3C validator