![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > mon1ply1 | Structured version Unicode version |
Description: A univariate monomial is a univariate polynomial. (Contributed by AV, 8-Oct-2019.) |
Ref | Expression |
---|---|
gsummonply1.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gsummonply1.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gsummonply1.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gsummonply1.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gsummonply1.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mon1ply1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummonply1.r |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | gsummonply1.p |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | ply1rng 17821 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl 16 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eqid 2452 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | rngmgp 16769 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | syl 16 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | adantr 465 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | simpr 461 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | gsummonply1.x |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | gsummonply1.b |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 2, 11 | vr1cl 17790 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 1, 12 | syl 16 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | adantr 465 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 5, 11 | mgpbas 16714 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | gsummonply1.e |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 15, 16 | mulgnn0cl 15757 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 8, 9, 14, 17 | syl3anc 1219 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1954 ax-ext 2431 ax-rep 4506 ax-sep 4516 ax-nul 4524 ax-pow 4573 ax-pr 4634 ax-un 6477 ax-inf2 7953 ax-cnex 9444 ax-resscn 9445 ax-1cn 9446 ax-icn 9447 ax-addcl 9448 ax-addrcl 9449 ax-mulcl 9450 ax-mulrcl 9451 ax-mulcom 9452 ax-addass 9453 ax-mulass 9454 ax-distr 9455 ax-i2m1 9456 ax-1ne0 9457 ax-1rid 9458 ax-rnegex 9459 ax-rrecex 9460 ax-cnre 9461 ax-pre-lttri 9462 ax-pre-lttrn 9463 ax-pre-ltadd 9464 ax-pre-mulgt0 9465 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2265 df-mo 2266 df-clab 2438 df-cleq 2444 df-clel 2447 df-nfc 2602 df-ne 2647 df-nel 2648 df-ral 2801 df-rex 2802 df-reu 2803 df-rmo 2804 df-rab 2805 df-v 3074 df-sbc 3289 df-csb 3391 df-dif 3434 df-un 3436 df-in 3438 df-ss 3445 df-pss 3447 df-nul 3741 df-if 3895 df-pw 3965 df-sn 3981 df-pr 3983 df-tp 3985 df-op 3987 df-uni 4195 df-int 4232 df-iun 4276 df-iin 4277 df-br 4396 df-opab 4454 df-mpt 4455 df-tr 4489 df-eprel 4735 df-id 4739 df-po 4744 df-so 4745 df-fr 4782 df-se 4783 df-we 4784 df-ord 4825 df-on 4826 df-lim 4827 df-suc 4828 df-xp 4949 df-rel 4950 df-cnv 4951 df-co 4952 df-dm 4953 df-rn 4954 df-res 4955 df-ima 4956 df-iota 5484 df-fun 5523 df-fn 5524 df-f 5525 df-f1 5526 df-fo 5527 df-f1o 5528 df-fv 5529 df-isom 5530 df-riota 6156 df-ov 6198 df-oprab 6199 df-mpt2 6200 df-of 6425 df-ofr 6426 df-om 6582 df-1st 6682 df-2nd 6683 df-supp 6796 df-recs 6937 df-rdg 6971 df-1o 7025 df-2o 7026 df-oadd 7029 df-er 7206 df-map 7321 df-pm 7322 df-ixp 7369 df-en 7416 df-dom 7417 df-sdom 7418 df-fin 7419 df-fsupp 7727 df-oi 7830 df-card 8215 df-pnf 9526 df-mnf 9527 df-xr 9528 df-ltxr 9529 df-le 9530 df-sub 9703 df-neg 9704 df-nn 10429 df-2 10486 df-3 10487 df-4 10488 df-5 10489 df-6 10490 df-7 10491 df-8 10492 df-9 10493 df-10 10494 df-n0 10686 df-z 10753 df-uz 10968 df-fz 11550 df-fzo 11661 df-seq 11919 df-hash 12216 df-struct 14289 df-ndx 14290 df-slot 14291 df-base 14292 df-sets 14293 df-ress 14294 df-plusg 14365 df-mulr 14366 df-sca 14368 df-vsca 14369 df-tset 14371 df-ple 14372 df-0g 14494 df-gsum 14495 df-mre 14638 df-mrc 14639 df-acs 14641 df-mnd 15529 df-mhm 15578 df-submnd 15579 df-grp 15659 df-minusg 15660 df-mulg 15662 df-subg 15792 df-ghm 15859 df-cntz 15949 df-cmn 16395 df-abl 16396 df-mgp 16709 df-ur 16721 df-rng 16765 df-subrg 16981 df-psr 17541 df-mvr 17542 df-mpl 17543 df-opsr 17545 df-psr1 17755 df-vr1 17756 df-ply1 17757 |
This theorem is referenced by: smon1ply1 30989 gsumsmonply1 30990 pmatcollpw1lem1 31243 mp2pm2mplem5 31278 pm2mpghmlem2 31280 |
Copyright terms: Public domain | W3C validator |